cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319443 Number of distinct Eisenstein primes in the factorization of n.

This page as a plain text file.
%I A319443 #19 Feb 10 2020 17:40:35
%S A319443 0,1,1,1,1,2,2,1,1,2,1,2,2,3,2,1,1,2,2,2,3,2,1,2,1,3,1,3,1,3,2,1,2,2,
%T A319443 3,2,2,3,3,2,1,4,2,2,2,2,1,2,2,2,2,3,1,2,2,3,3,2,1,3,2,3,3,1,3,3,2,2,
%U A319443 2,4,1,2,2,3,2,3,3,4,2,2,1,2,1,4,2,3,2
%N A319443 Number of distinct Eisenstein primes in the factorization of n.
%C A319443 Equivalent of omega (A001221) in the ring of Eisenstein integers.
%C A319443 z is an Eisenstein prime iff z has prime norm or z is the product of a rational prime congruent to 2 modulo 3 and an Eisenstein unit (one of +-1 or (+-1 +- sqrt(3)*i)/2).
%C A319443 Associated Eisenstein prime divisors are counted only once.
%C A319443 Let s(n) be the smallest k with a(k) = n, then we have: s(0) = 1, s(1) = 2, s(2) = 6, s(2n-1) = 2*A121940(n-1), s(2n) = 6*A121940(n-1).
%H A319443 Jianing Song, <a href="/A319443/b319443.txt">Table of n, a(n) for n = 1..10000</a>
%H A319443 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a>
%F A319443 Additive with a(p^e) = 2 if p == 1 (mod 3), 1 otherwise.
%e A319443 Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
%e A319443 Over the Gaussian integers, 5187 = 3*7*13*19 is factored as w'*(1 + w)^2*(2 + w)*(2 + w')*(3 + w)*(3 + w')*(3 + 2w)*(3 + 2w'), the distinct Eisenstein prime factors are 1 + w, 2 + w, 2 + w', 3 + w, 3 + w', 3 + 2w and 3 + 2w', so a(5187) = 7.
%e A319443 Over the Gaussian integers, 1006655265000 = 2^3*3^2*5^4*7^5*11^3 is factored as w'^2*(1 + w)^4*2^3*(2 + w)*(2 + w')*5^4*11^3, the distinct Eisenstein prime factors are 1 + w, 2, 2 + w, 2 + w', 5 and 11, so a(1006655265000) = 6.
%t A319443 f[p_, e_] := If[Mod[p, 3] == 1, 2, 1]; eisOmega[1] = 0; eisOmega[n_] := Plus @@ f @@@ FactorInteger[n]; Array[eisOmega, 100] (* _Amiram Eldar_, Feb 10 2020 *)
%o A319443 (PARI) a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, if(f[i]%3==1, 2, 1))
%Y A319443 Cf. A121940.
%Y A319443 Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), this sequence ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
%Y A319443 Equivalent in the ring of Gaussian integers: A086275.
%K A319443 nonn
%O A319443 1,6
%A A319443 _Jianing Song_, Sep 19 2018