A319445 Number of Eisenstein integers in a reduced system modulo n.
1, 3, 6, 12, 24, 18, 36, 48, 54, 72, 120, 72, 144, 108, 144, 192, 288, 162, 324, 288, 216, 360, 528, 288, 600, 432, 486, 432, 840, 432, 900, 768, 720, 864, 864, 648, 1296, 972, 864, 1152, 1680, 648, 1764, 1440, 1296, 1584, 2208, 1152, 1764, 1800, 1728, 1728, 2808
Offset: 1
Examples
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. {1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3. {1, w, w^2, -1, w', w'^2} is the set of 6 units in the Eisenstein integers modulo 3, so a(3) = 6. {1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3. {1, w, 1 + w, w', 1 + w', -1 + 2w, -1, -w, -1 - w, -w', -1 - w', -1 + 2w'} is the set of 12 units in the Eisenstein integers modulo 4, so a(4) = 12.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Wikipedia, Eisenstein integer
Crossrefs
Cf. A007434.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), this sequence ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A079458.
Programs
-
Mathematica
f[p_, e_] := If[p == 3 , 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisPhi, 100] (* Amiram Eldar, Feb 10 2020 *)
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==3, r*=2*3^(2*e-1)); if(p%3==1, r*=(p-1)^2*p^(2*e-2)); if(p%3==2, r*=(p^2-1)*p^(2*e-2)); ); return(r); }
Formula
Multiplicative with a(3^e) = 2*3^(2*e-1), a(p^e) = phi(p^e)^2 = (p-1)^2*p^(2*e-2) if p == 1 (mod 3) and J_2(p^e) = A007434(p^e) = (p^2 - 1)*p^(2*e-2) if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (8/27) * Product_{p prime == 1 (mod 3)} (1 - 2/p^2 + 1/p^3) * Product_{p prime == 2 (mod 3)} (1 - 1/p^3) = 0.2410535987... . - Amiram Eldar, Feb 13 2024
Comments