cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319445 Number of Eisenstein integers in a reduced system modulo n.

Original entry on oeis.org

1, 3, 6, 12, 24, 18, 36, 48, 54, 72, 120, 72, 144, 108, 144, 192, 288, 162, 324, 288, 216, 360, 528, 288, 600, 432, 486, 432, 840, 432, 900, 768, 720, 864, 864, 648, 1296, 972, 864, 1152, 1680, 648, 1764, 1440, 1296, 1584, 2208, 1152, 1764, 1800, 1728, 1728, 2808
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of phi (A000010) in the ring of Eisenstein integers.
Number of units in the ring Z[w]/nZ[w], where Z[w] is the ring of Eisenstein integers.
a(n) is the number of elements in G(n) = {a + b*w: a, b in Z/nZ and gcd(a^2 + a*b + b^2, n) = 1} where w = (1 + sqrt(3)*i)/2.
a(n) is the number of ordered pairs (a, b) modulo n such that gcd(a^2 + a*b + b^2, n) = 1.
For n > 2, a(n) is divisible by 6.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
{1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3.
{1, w, w^2, -1, w', w'^2} is the set of 6 units in the Eisenstein integers modulo 3, so a(3) = 6.
{1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3.
{1, w, 1 + w, w', 1 + w', -1 + 2w, -1, -w, -1 - w, -w', -1 - w', -1 + 2w'} is the set of 12 units in the Eisenstein integers modulo 4, so a(4) = 12.
		

Crossrefs

Cf. A007434.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), this sequence ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A079458.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisPhi, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=2*3^(2*e-1));
            if(p%3==1, r*=(p-1)^2*p^(2*e-2));
            if(p%3==2, r*=(p^2-1)*p^(2*e-2));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = 2*3^(2*e-1), a(p^e) = phi(p^e)^2 = (p-1)^2*p^(2*e-2) if p == 1 (mod 3) and J_2(p^e) = A007434(p^e) = (p^2 - 1)*p^(2*e-2) if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (8/27) * Product_{p prime == 1 (mod 3)} (1 - 2/p^2 + 1/p^3) * Product_{p prime == 2 (mod 3)} (1 - 1/p^3) = 0.2410535987... . - Amiram Eldar, Feb 13 2024