A319447 a(n) is the rank of the multiplicative group of Eisenstein integers modulo n.
0, 1, 1, 2, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 4, 2, 3, 3, 2, 1, 4, 2, 3, 3, 4, 1, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 3, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 5, 3, 2, 1, 4, 2, 3, 5, 3, 3, 3, 2, 3, 2, 4, 1, 4, 2, 3, 2, 4, 3, 4, 2, 4, 3, 2, 1, 5, 2, 3, 2
Offset: 1
Keywords
Examples
(Z[w]/1Z[w])* = C_1 (has rank 0); (Z[w]/2Z[w])* = C_3 (has rank 1); (Z[w]/3Z[w])* = C_6 (has rank 1); (Z[w]/4Z[w])* = C_2 X C_6 (has rank 2); (Z[w]/5Z[w])* = C_24 (has rank 1); (Z[w]/6Z[w])* = C_3 X C_6 (has rank 2); (Z[w]/7Z[w])* = C_6 X C_6 (has rank 2); (Z[w]/8Z[w])* = C_2 X C_2 X C_12 (has rank 3); (Z[w]/9Z[w])* = C_3 X C_3 X C_6 (has rank 3); (Z[w]/10Z[w])* = C_3 X C_24 (has rank 2).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Jianing Song, Structure of (R/P^e)* for R the ring of integers of a quadratic field and P a prime ideal of R
- Wikipedia, Eisenstein integer
Programs
-
PARI
rad(n) = factorback(factorint(n)[, 1]); grad(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2&e==1, r*=3); if(p==2&e==2, r*=12); if(p==2&e>=3, r*=24); if(p==3&e==1, r*=6); if(p==3&e>=2, r*=54); if(p%6==1, r*=(rad(p-1))^2); if(p%6==5&e==1, r*=rad(p^2-1)); if(p%6==5&e>=2, r*=p^2*rad(p^2-1)); ); return(r); } a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0); \\ The program is based on the facts that although rank((Z[w]/nZ[w])*) is not additive, the p-rank of (Z[w]/nZ[w])* is additive for any prime p, and that rank((Z[w]/nZ[w])*) is the maximum of the p-rank of (Z[w]/nZ[w])* where p runs through all primes. - Jianing Song, Aug 05 2019
Formula
Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 6) or p == 5 (mod 6), e >= 2; a(p) = 1 if p == 5 (mod 6). a(3) = 1, a(3^e) = 3 for e >= 2. a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3. [Corrected by Jianing Song, Aug 05 2019]
Extensions
Corrected by Jianing Song, Jan 12 2019
Comments