This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319448 #17 Feb 10 2020 18:23:21 %S A319448 1,-1,0,0,-1,0,1,0,0,1,-1,0,1,-1,0,0,-1,0,1,0,0,1,-1,0,0,-1,0,0,-1,0, %T A319448 1,0,0,1,-1,0,1,-1,0,0,-1,0,1,0,0,1,-1,0,0,0,0,0,-1,0,1,0,0,1,-1,0,1, %U A319448 -1,0,0,-1,0,1,0,0,1,-1,0,1,-1,0,0,-1,0,1,0,0 %N A319448 Moebius function mu(n) defined for the Eisenstein integers. %C A319448 Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Eisenstein prime factor, otherwise (-1)^t if n is a product of an Eisenstein unit and t distinct Eisenstein prime factors. %C A319448 Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. a(n) = 0 for n divisible by 3 since 3 = w'*(1 + w)^2 contains a squared factor. For rational primes p == 1 (mod 3), p is always factored as (x + y*w)(x + y*w'), x + y*w and x + y*w' are not associated so a(p) = (-1)*(-1) = 1. %H A319448 Jianing Song, <a href="/A319448/b319448.txt">Table of n, a(n) for n = 1..10000</a> %H A319448 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a> %F A319448 a(n) = 0 if n is divisible by 3 or has a square prime factor, otherwise Product_{p divides n} (3 - 2*(p mod 3)) where the product is taken over the primes. %F A319448 Multiplicative with a(p^e) = 0 if p = 3 or e > 1, a(p) = 1 if p == 1 (mod 3) and -1 if p == 2 (mod 3). %F A319448 For squarefree n, a(n) = Legendre symbol (n, 3) = Kronecker symbol (-3, n) = A102283(n). %e A319448 Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. %e A319448 a(14) = -1 because 14 is factored as 2*(2 + w)*(2 + w') with three distinct Eisenstein prime factors. %e A319448 a(55) = (-1)*(-1) = 1 because 55 = 5*11 where 5 and 11 are congruent to 2 mod 3 (thus being Eisenstein primes). %t A319448 f[p_, e_] := If[p == 3 || e > 1, 0, Switch[Mod[p, 3], 1, 1, 2, -1]]; eisMu[1] = 1; eisMu[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisMu, 100] (* _Amiram Eldar_, Feb 10 2020 *) %o A319448 (PARI) %o A319448 a(n)= %o A319448 { %o A319448 my(r=1, f=factor(n)); %o A319448 for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); %o A319448 if(p==3||e>=2, r=0); %o A319448 if(Mod(p, 3)==2&e==1, r*=-1); %o A319448 ); %o A319448 return(r); %o A319448 } %Y A319448 Cf. A102283. %Y A319448 Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), this sequence ("mu", A008683). %Y A319448 Equivalent in the ring of Gaussian integers: A318608. %K A319448 sign,mult %O A319448 1,1 %A A319448 _Jianing Song_, Sep 19 2018