cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319449 Sum of the norm of divisors of n over Eisenstein integers, with associated divisors counted only once.

Original entry on oeis.org

1, 5, 13, 21, 26, 65, 64, 85, 121, 130, 122, 273, 196, 320, 338, 341, 290, 605, 400, 546, 832, 610, 530, 1105, 651, 980, 1093, 1344, 842, 1690, 1024, 1365, 1586, 1450, 1664, 2541, 1444, 2000, 2548, 2210, 1682, 4160, 1936, 2562, 3146, 2650, 2210, 4433, 3249, 3255
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of sigma (A000203) in the ring of Eisenstein integers. Note that only norms are summed up.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2, and ||d|| denote the norm of d.
a(3) = ||1|| + ||1 + w|| + ||3|| = 1 + 3 + 9 = 13.
a(7) = ||1|| + ||2 + w|| + ||2 + w'|| + ||7|| = 1 + 7 + 7 + 49 = 64.
		

Crossrefs

Cf. A001157.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), this sequence ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A317797.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , DivisorSigma[1, 3^(2*e)], Switch[Mod[p, 3], 1, DivisorSigma[1, p^e]^2, 2, DivisorSigma[2, p^e]]]; eisSigma[1] = 1; eisSigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisSigma, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=((3^(2*e+1)-1)/2));
            if(Mod(p, 3)==1, r*=((p^(e+1)-1)/(p-1))^2);
            if(Mod(p, 3)==2, r*=(p^(2*e+2)-1)/(p^2-1));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = sigma(3^(2e)) = (3^(2e+1) - 1)/2, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 3) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 2 (mod 3).