A319449 Sum of the norm of divisors of n over Eisenstein integers, with associated divisors counted only once.
1, 5, 13, 21, 26, 65, 64, 85, 121, 130, 122, 273, 196, 320, 338, 341, 290, 605, 400, 546, 832, 610, 530, 1105, 651, 980, 1093, 1344, 842, 1690, 1024, 1365, 1586, 1450, 1664, 2541, 1444, 2000, 2548, 2210, 1682, 4160, 1936, 2562, 3146, 2650, 2210, 4433, 3249, 3255
Offset: 1
Examples
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2, and ||d|| denote the norm of d. a(3) = ||1|| + ||1 + w|| + ||3|| = 1 + 3 + 9 = 13. a(7) = ||1|| + ||2 + w|| + ||2 + w'|| + ||7|| = 1 + 7 + 7 + 49 = 64.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Wikipedia, Eisenstein integer
Crossrefs
Cf. A001157.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), this sequence ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A317797.
Programs
-
Mathematica
f[p_, e_] := If[p == 3 , DivisorSigma[1, 3^(2*e)], Switch[Mod[p, 3], 1, DivisorSigma[1, p^e]^2, 2, DivisorSigma[2, p^e]]]; eisSigma[1] = 1; eisSigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisSigma, 100] (* Amiram Eldar, Feb 10 2020 *)
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==3, r*=((3^(2*e+1)-1)/2)); if(Mod(p, 3)==1, r*=((p^(e+1)-1)/(p-1))^2); if(Mod(p, 3)==2, r*=(p^(2*e+2)-1)/(p^2-1)); ); return(r); }
Formula
Multiplicative with a(3^e) = sigma(3^(2e)) = (3^(2e+1) - 1)/2, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 3) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 2 (mod 3).
Comments