A319450 Numbers k such that k and k + 1 both have primitive roots.
1, 2, 3, 4, 5, 6, 9, 10, 13, 17, 18, 22, 25, 26, 37, 46, 49, 53, 58, 61, 73, 81, 82, 97, 106, 121, 157, 162, 166, 178, 193, 226, 241, 242, 250, 262, 277, 313, 337, 346, 358, 361, 382, 397, 421, 457, 466, 478, 486, 502, 541, 562, 577, 586, 613, 625, 661, 673, 718
Offset: 1
Keywords
Examples
5 is a primitive root modulo both 46 and 47, so 46 is a term. 2 is a primitive root modulo 53 and 5 is a primitive root modulo 54, so 53 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1001 from Michel Marcus)
Programs
-
Mathematica
q[n_] := q[n] = EulerPhi[n] == CarmichaelLambda[n]; Select[Range[720],q[#] && q[# + 1] &] (* Amiram Eldar, Jul 21 2024 *)
-
PARI
isA033948(n) = (#znstar(n)[2]<=1) isA319450(n) = isA033948(n)&&isA033948(n+1)
Comments