This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319453 #23 Aug 19 2021 18:24:34 %S A319453 1,0,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,2,2,1,1,0,1,3,3,2,1,1,0,1,3,4,3,2, %T A319453 1,1,0,1,4,5,5,3,2,1,1,0,1,4,7,6,5,3,2,1,1,0,0,5,8,9,7,5,3,2,1,1,0,1, %U A319453 4,10,11,10,7,5,3,2,1,1,0,0,5,11,15,13,11,7,5,3,2,1,1 %N A319453 Number T(n,k) of partitions of n into exactly k nonzero decimal palindromes; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A319453 Differs from A008284 and from A072233 first at T(10,1) = 0. %H A319453 Alois P. Heinz, <a href="/A319453/b319453.txt">Rows n = 0..200, flattened</a> %F A319453 T(n,k) = [x^n y^k] 1/Product_{j>=2} (1-y*x^A002113(j)). %F A319453 Sum_{k=0..3} T(n,k) = A261132(n). %e A319453 Triangle T(n,k) begins: %e A319453 1; %e A319453 0, 1; %e A319453 0, 1, 1; %e A319453 0, 1, 1, 1; %e A319453 0, 1, 2, 1, 1; %e A319453 0, 1, 2, 2, 1, 1; %e A319453 0, 1, 3, 3, 2, 1, 1; %e A319453 0, 1, 3, 4, 3, 2, 1, 1; %e A319453 0, 1, 4, 5, 5, 3, 2, 1, 1; %e A319453 0, 1, 4, 7, 6, 5, 3, 2, 1, 1; %e A319453 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1; %e A319453 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1; %e A319453 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1; %e A319453 ... %p A319453 p:= proc(n) option remember; local i, s; s:= ""||n; %p A319453 for i to iquo(length(s), 2) do if %p A319453 s[i]<>s[-i] then return false fi od; true %p A319453 end: %p A319453 h:= proc(n) option remember; `if`(n<1, 0, %p A319453 `if`(p(n), n, h(n-1))) %p A319453 end: %p A319453 b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, %p A319453 b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i))))) %p A319453 end: %p A319453 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))): %p A319453 seq(T(n), n=0..14); %Y A319453 Columns k=0-10 give: A000007, A136522 (for n>0), A319468, A261131, A319469, A319470, A319471, A319472, A319473, A319474, A319475. %Y A319453 Row sums give A091580. %Y A319453 T(2n,n) gives A319454. %Y A319453 Cf. A002113, A008284, A072233, A261132. %K A319453 nonn,tabl,base %O A319453 0,13 %A A319453 _Alois P. Heinz_, Sep 19 2018