cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319477 Nonnegative integers which cannot be obtained by adding exactly two nonzero decimal palindromes.

This page as a plain text file.
%I A319477 #28 Jan 08 2025 11:13:18
%S A319477 0,1,21,32,43,54,65,76,87,98,111,131,141,151,161,171,181,191,201,1031,
%T A319477 1041,1042,1051,1052,1053,1061,1062,1063,1064,1071,1072,1073,1074,
%U A319477 1075,1081,1082,1083,1084,1085,1086,1091,1092,1093,1094,1095,1096,1097,1099
%N A319477 Nonnegative integers which cannot be obtained by adding exactly two nonzero decimal palindromes.
%C A319477 Every integer larger than two can be obtained by adding exactly three nonzero decimal palindromes.
%C A319477 The nonzero palindromes of this sequence are in A213879.
%H A319477 Alois P. Heinz, <a href="/A319477/b319477.txt">Table of n, a(n) for n = 1..65536</a>
%H A319477 Javier Cilleruelo, Florian Luca and Lewis Baxter, <a href="https://arxiv.org/abs/1602.06208">Every positive integer is a sum of three palindromes</a>, arXiv: 1602.06208 [math.NT], 2017, <a href="https://doi.org/10.1090/mcom/3221">Math. Comp.</a> 87 (2018), 3023-3055.
%H A319477 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=OKhacWQ2fCs">Every Number is the Sum of Three Palindromes</a>, Numberphile video (2018)
%F A319477 A319468(a(n)) = 0.
%p A319477 p:= proc(n) option remember; local i, s; s:= ""||n;
%p A319477       for i to iquo(length(s), 2) do if
%p A319477         s[i]<>s[-i] then return false fi od; true
%p A319477     end:
%p A319477 h:= proc(n) option remember; `if`(n<1, 0,
%p A319477      `if`(p(n), n, h(n-1)))
%p A319477     end:
%p A319477 b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i<n,
%p A319477       0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
%p A319477     end:
%p A319477 g:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(2):
%p A319477 a:= proc(n) option remember; local j; for j from 1+
%p A319477       `if`(n=1, -1, a(n-1)) while g(j)<>0 do od; j
%p A319477     end:
%p A319477 seq(a(n), n=1..80);
%Y A319477 Cf. A002113, A035137 (allowing zero), A213879, A261131, A319453, A319468, A319586.
%K A319477 nonn,base
%O A319477 1,3
%A A319477 _Alois P. Heinz_, Sep 19 2018