A319480 Number of ordered pairs (i,j) with 0 < i < j < prime(n)/2 such that R(i^2,prime(n)) > R(j^2,prime(n)), where R(k,p) (with p an odd prime and k an integer) denotes the unique integer r among 0,1,...,(p-1)/2 for which k is congruent to r or -r modulo p.
0, 0, 1, 3, 7, 10, 14, 19, 41, 42, 74, 79, 85, 100, 154, 163, 207, 224, 245, 309, 318, 342, 449, 536, 590, 553, 581, 715, 738, 856, 912, 1085, 1037, 1324, 1229, 1477, 1442, 1491, 1785, 1730, 1952, 1986, 2240, 2316, 2191, 2474, 2748, 2836, 3176
Offset: 2
Keywords
Examples
a(3) = 0 since prime(3) = 5 and R(1^2,5) = 1 = R(2^2,5). a(4) = 1 since prime(4) = 7, R(1^2,7) = 1 < R(2^2,7) = 3, R(1^2,7) < R(3^2,7) = 2, and R(2^2,7) = 3 > R(3^2,7) = 2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
R[k_,p_]:=R[k,p]=Abs[Mod[k,p,-p/2]]; t[p_]:=t[p]=Sum[Boole[R[i^2,p]>R[j^2,p]],{j,2,(p-1)/2},{i,1,j-1}]; Table[t[Prime[n]],{n,2,50}]
Comments