cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319496 Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.

This page as a plain text file.
%I A319496 #14 Dec 16 2018 17:58:22
%S A319496 2,3,7,13,19,37,53,61,89,91,113,131,151,223,247,251,281,299,311,359,
%T A319496 377,427,463,503,593,611,659,689,703,719,791,827,851,863,923,953,1069,
%U A319496 1073,1159,1163,1291,1321,1339,1363,1511,1619,1703,1733,1739,1757,1769
%N A319496 Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
%C A319496 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of connected strict antichains of multisets spanning an initial interval of positive integers.
%e A319496 The sequence of multisystems whose MM-numbers belong to the sequence begins:
%e A319496     2: {{}}
%e A319496     3: {{1}}
%e A319496     7: {{1,1}}
%e A319496    13: {{1,2}}
%e A319496    19: {{1,1,1}}
%e A319496    37: {{1,1,2}}
%e A319496    53: {{1,1,1,1}}
%e A319496    61: {{1,2,2}}
%e A319496    89: {{1,1,1,2}}
%e A319496    91: {{1,1},{1,2}}
%e A319496   113: {{1,2,3}}
%e A319496   131: {{1,1,1,1,1}}
%e A319496   151: {{1,1,2,2}}
%e A319496   223: {{1,1,1,1,2}}
%e A319496   247: {{1,2},{1,1,1}}
%e A319496   251: {{1,2,2,2}}
%e A319496   281: {{1,1,2,3}}
%e A319496   299: {{1,2},{2,2}}
%t A319496 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A319496 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
%t A319496 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A319496 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A319496 Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
%Y A319496 Cf. A003963, A006126, A055932, A056239, A112798, A285573, A286520, A293994, A302242, A318401, A319719, A319837, A320275, A320456, A320532.
%K A319496 nonn
%O A319496 1,1
%A A319496 _Gus Wiseman_, Dec 16 2018