cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319510 Rank of elliptic curve y^2 = x^3 - n^2 * x.

This page as a plain text file.
%I A319510 #27 Jul 02 2024 21:45:36
%S A319510 0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,0,0,2,
%T A319510 0,0,1,1,1,0,2,0,0,0,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,0,2,0,0,0,
%U A319510 1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0
%N A319510 Rank of elliptic curve y^2 = x^3 - n^2 * x.
%H A319510 Seiichi Manyama, <a href="/A319510/b319510.txt">Table of n, a(n) for n = 1..5000</a>
%F A319510 a(n) = A060952(n^2).
%F A319510 a(A003273(n)) > 0.
%F A319510 a(A194687(n)) = n.
%F A319510 Empirical: a(n) = a(4*n). - _Jose Aranda_, Jul 02 2024
%o A319510 (PARI) {a(n) = ellanalyticrank(ellinit([0, 0, 0, -n^2, 0]))[1]}
%Y A319510 Cf. A003273, A060952, A062693, A062695, A194687, A273929.
%K A319510 nonn
%O A319510 1,34
%A A319510 _Seiichi Manyama_, Sep 24 2018