cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319513 The boustrophedonic Rosenberg-Strong function maps N onto N X N where N = {0, 1, 2, ...} and n -> factor(a(n)) = 2^x*3^y -> (x, y).

Original entry on oeis.org

1, 3, 6, 2, 4, 12, 36, 18, 9, 27, 54, 108, 216, 72, 24, 8, 16, 48, 144, 432, 1296, 648, 324, 162, 81, 243, 486, 972, 1944, 3888, 7776, 2592, 864, 288, 96, 32, 64, 192, 576, 1728, 5184, 15552, 46656, 23328, 11664, 5832, 2916, 1458, 729, 2187, 4374, 8748, 17496
Offset: 0

Views

Author

Peter Luschny, Sep 21 2018

Keywords

Comments

If (x, y) and (x', y') are adjacent points on the trajectory of the map then for the boustrophedonic Rosenberg-Strong function max(|x - x'|, |y - y'|) is always 1 whereas for the Rosenberg-Strong function this quantity can become arbitrarily large. In this sense the boustrophedonic variant is continuous in contrast to the original Rosenberg-Strong function.

References

  • A. L. Rosenberg, H. R. Strong, Addressing arrays by shells, IBM Technical Disclosure Bulletin, vol 14(10), 1972, p. 3026-3028.

Crossrefs

See A319514 for a non-decoded variant with interleaved x and y coordinates.

Programs

  • Julia
    function bRS(n)
        m = x = isqrt(n)
        y = n - x^2
        x <= y && ((x, y) = (2x - y, x))
        isodd(m) ? (y, x) : (x, y)
    end
    A319513(n) = ((x, y) = bRS(n); 2^x * 3^y)
    [A319513(n) for n in 0:52] |> println
  • Maple
    A319513 := proc(n) local b, r, p, m;
        b := floor(sqrt(n)); r := n - b^2;
        p := `if`(r < b, [b, r], [2*b-r, b]);
        m := `if`(p[1] > p[2], p[1], p[2]);
        `if`(irem(m,2) = 0, 2^p[1]*3^p[2], 2^p[2]*3^p[1]) end:
    seq(A319513(n), n=0..52);
  • Mathematica
    a[n_] := Module[{b, r, p1, p2, m}, b = Floor[Sqrt[n]]; r = n-b^2; {p1, p2} = If[rp2, p1, p2]; If[EvenQ[m], 2^p1 3^p2, 2^p2 3^p1]]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Feb 14 2019, from Maple *)