cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319522 Completely multiplicative with a(prime(2*k)) = prime(k) and a(prime(2*k-1)) = 1 for any k > 0 (where prime(k) denotes the k-th prime number).

This page as a plain text file.
%I A319522 #10 Aug 11 2022 09:57:42
%S A319522 1,1,2,1,1,2,3,1,4,1,1,2,5,3,2,1,1,4,7,1,6,1,1,2,1,5,8,3,11,2,1,1,2,1,
%T A319522 3,4,13,7,10,1,1,6,17,1,4,1,1,2,9,1,2,5,19,8,1,3,14,11,1,2,23,1,12,1,
%U A319522 5,2,1,1,2,3,29,4,1,13,2,7,3,10,31,1,16,1
%N A319522 Completely multiplicative with a(prime(2*k)) = prime(k) and a(prime(2*k-1)) = 1 for any k > 0 (where prime(k) denotes the k-th prime number).
%C A319522 See A319521 for a similar sequence and additional comments.
%F A319522 a(n) = 1 iff n belongs to A066208.
%F A319522 a(n) <= n with equality iff n = 1.
%F A319522 A007814(a(n)) = A007949(n).
%F A319522 a(n) = A319521(A064989(n)).
%e A319522 a(42) = a(prime(1)) * a(prime(2)) * a(prime(4)) = 1 * prime(1) * prime(2) = 6.
%o A319522 (PARI) a(n) = my (f=factor(n)); prod(i=1, #f~, my (pi=primepi(f[i,1])); if (pi%2==0, prime(pi/2)^f[i,2], 1))
%Y A319522 Cf. A007814, A007949, A064989, A066208, A319521.
%K A319522 nonn,mult
%O A319522 1,3
%A A319522 _Rémy Sigrist_, Sep 22 2018