This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319523 #9 Sep 24 2018 08:55:30 %S A319523 1,2,3,5,6,7,4,15,14,9,11,12,35,18,13,10,33,28,45,26,21,17,30,77,36, %T A319523 65,42,19,8,51,70,99,52,105,38,27,25,24,119,90,143,84,95,54,49,22,75, %U A319523 56,153,130,231,76,135,98,39,23,66,175,72,221,210,209,108,245 %N A319523 Square array T(n, k) (n >= 1, k >= 1) read by antidiagonals upwards: T(n, k) is the unique positive integer m such that A319521(m) = n and A319522(m) = k. %F A319523 T(n, k) = A061898(T(k, n)). %F A319523 T(n, n) = A275407(n). %F A319523 T(n, 1) = A319525(n). %F A319523 T(1, k) = A297002(k). %F A319523 T(n, k) = T(n, 1) * T(1, k) = A319525(n) * A297002(k). %F A319523 A001221(T(n, k)) = A001221(n) + A001221(k). %F A319523 A001222(T(n, k)) = A001222(n) + A001222(k). %e A319523 Array T(n, k) begins: %e A319523 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A319523 ---+------------------------------------------------------------ %e A319523 1| 1 3 7 9 13 21 19 27 49 39 29 63 %e A319523 2| 2 6 14 18 26 42 38 54 98 78 58 126 %e A319523 3| 5 15 35 45 65 105 95 135 245 195 145 315 %e A319523 4| 4 12 28 36 52 84 76 108 196 156 116 252 %e A319523 5| 11 33 77 99 143 231 209 297 539 429 319 693 %e A319523 6| 10 30 70 90 130 210 190 270 490 390 290 630 %e A319523 7| 17 51 119 153 221 357 323 459 833 663 493 1071 %e A319523 8| 8 24 56 72 104 168 152 216 392 312 232 504 %e A319523 9| 25 75 175 225 325 525 475 675 1225 975 725 1575 %e A319523 10| 22 66 154 198 286 462 418 594 1078 858 638 1386 %o A319523 (PARI) T(n,k) = my (fn=factor(n), fk=factor(k)); prod(i=1, #fn~, prime(2*primepi(fn[i,1])-1)^fn[i,2]) * prod(i=1, #fk~, prime(2*primepi(fk[i,1]))^fk[i,2]) %Y A319523 Cf. A001221, A001222, A061898, A275407 (main diagonal), A297002 (first row), A319521, A319522, A319525 (first column). %K A319523 nonn,tabl %O A319523 1,2 %A A319523 _Rémy Sigrist_, Sep 22 2018