cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319524 a(n) is the smallest number that belongs simultaneously to the two arithmetic progressions prime(n) + m*prime(n+1) and prime(n+1) + m*prime(n+2), m >= 1, n >= 1.

This page as a plain text file.
%I A319524 #187 Dec 23 2024 14:53:45
%S A319524 8,33,40,128,115,302,226,226,835,401,734,1718,1030,842,3121,3475,1401,
%T A319524 2339,5108,1969,3233,2486,6491,9692,10298,5560,11552,6211,4177,7987,
%U A319524 6022,18763,16678,21893,8001,25585,13523,9682,30961,32035,7057,36089,19105,39002,7162,47041,50163,51752
%N A319524 a(n) is the smallest number that belongs simultaneously to the two arithmetic progressions prime(n) + m*prime(n+1) and prime(n+1) + m*prime(n+2), m >= 1, n >= 1.
%C A319524 Construct a table T in which T(m,n) = prime(n) + m*prime(n+1) as shown below. Then a(n) is defined as the smallest number appearing both in column n and column n+1, so a(1)=8, a(2)=33, a(3)=40, etc.
%C A319524 .
%C A319524    m\n|  1     2     3     4     5     6     7     8  ...
%C A319524   ----+--------------------------------------------------
%C A319524     1 |  5   --8    12    18    24    30    36    42  ...
%C A319524       |
%C A319524     2 |  8--  13    19    29    37    47    55    65  ...
%C A319524       |
%C A319524     3 | 11    18    26    40    50    64    74    88  ...
%C A319524       |                  /
%C A319524     4 | 14    23    33  / 51    63    81    93   111  ...
%C A319524       |            /   /
%C A319524     5 | 17    28  / 40-   62    76    98   112   134  ...
%C A319524       |          /
%C A319524     6 | 20    33-   47    73    89   115   131   157  ...
%C A319524       |                             /
%C A319524     7 | 23    38    54    84   102 / 132   150   180  ...
%C A319524       |                           /
%C A319524     8 | 26    43    61    95   115   149   169   203  ...
%C A319524       |
%C A319524     9 | 29    48    68   106   128   166   188   226  ...
%C A319524       |                       /                 /
%C A319524    10 | 32    53    75   117 / 141   183   207 / 249  ...
%C A319524       |                     /                 /
%C A319524    11 | 35    58    82   128   154   200   226   272  ...
%C A319524       |
%C A319524    12 | 38    63    89   139   167   217   245   295  ...
%C A319524       |
%C A319524    13 | 41    68    96   150   180   234   264   318  ...
%C A319524       |
%C A319524    14 | 44    73   103   161   193   251   283   341  ...
%C A319524       |
%C A319524    15 | 47    78   110   172   206   268   302   364  ...
%C A319524       |                                   /
%C A319524    16 | 50    83   117   183   219   285 / 321   387  ...
%C A319524       |                                 /
%C A319524    17 | 53    88   124   194   232   302   340   410  ...
%C A319524       |
%C A319524   ... |...   ...   ...   ...   ...   ...   ...   ...  ...
%C A319524 Conjectures:
%C A319524 1. There are infinitely many pairs of consecutive equal terms. (Note that the first pair is (a(7), a(8)).)
%C A319524 2. There exists no N such that the sequence is monotonic for n > N.
%C A319524 From _Amiram Eldar_, Sep 22 2018: (Start)
%C A319524 Theorem 1: The intersection of the two mentioned arithmetic progressions is always nonempty.
%C A319524 Corollary: The sequence is infinite. (End)
%C A319524 Sequences that derive from this:
%C A319524 1. Positions in {s(n)} at which a(n) occurs: (2,6,5,11,8,17,19,...).
%C A319524 2. Positions in {s(n+1)} at which a(n) occurs: (1,4,3,9,6,15,15,...).
%C A319524 3. Differences between these two sequences: (1,2,2,2,2,4,...).
%H A319524 Alois P. Heinz, <a href="/A319524/b319524.txt">Table of n, a(n) for n = 1..20000</a> (first 600 terms from Muniru A Asiru)
%H A319524 Fourth International contest of logical problems, <a href="http://users.skynet.be/albert.frank/fourth_international_contest3.html">Problem 7</a>, the Ludomind Society.
%H A319524 Fifth International contest of logical problems, <a href="http://www.sigmasociety.com/Fifth_international_contest.doc">Problem 6</a>, the Ludomind Society, 2009.
%H A319524 Olivier Gérard, in reply to Zak Seidov, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2016-April/016273.html">11 related sequences</a>, SeqFan list, Apr 14 2016.
%t A319524 a[n_]:=ChineseRemainder[{Prime[n],Prime[n+1]},{Prime[n+1],Prime[n+2]} ];Array[a,44] (* _Amiram Eldar_, Sep 22 2018 *)
%o A319524 (GAP) P:=Filtered([1..10000],IsPrime);;
%o A319524 T:=List([1..Length(P)-1],n->List([1..Length(P)-1],m->P[n]+m*P[n+1]));;
%o A319524 a:=List([1..50],k->Minimum(List([1..Length(T)-1],i->Intersection(T[i],T[i+1]))[k])); # _Muniru A Asiru_, Sep 26 2018
%Y A319524 Cf. A001043, A016789, A016885, A017041, A017473, A269100.
%K A319524 nonn,look
%O A319524 1,1
%A A319524 _Alexandra Hercilia Pereira Silva_, Sep 22 2018
%E A319524 Table from _Jon E. Schoenfield_, Sep 23 2018
%E A319524 More terms from _Amiram Eldar_, Sep 22 2018