This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319541 #22 Apr 20 2023 14:56:43 %S A319541 1,1,1,1,4,3,2,14,27,15,3,48,180,240,105,6,171,1089,2604,2625,945,11, %T A319541 614,6333,24180,42075,34020,10395,23,2270,36309,207732,554820,755370, %U A319541 509355,135135,46,8518,207255,1710108,6578550,13408740,14963130,8648640,2027025 %N A319541 Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2. %C A319541 See table 2.2 in the Johnson reference. %H A319541 Alois P. Heinz, <a href="/A319541/b319541.txt">Rows n = 1..141, flattened</a> %H A319541 Virginia Perkins Johnson, <a href="https://people.math.sc.edu/czabarka/Theses/JohnsonThesis.pdf">Enumeration Results on Leaf Labeled Trees</a>, Ph. D. Dissertation, Univ. South Carolina, 2012. %F A319541 T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319539(n,i). %e A319541 Triangle begins: %e A319541 1; %e A319541 1, 1; %e A319541 1, 4, 3; %e A319541 2, 14, 27, 15; %e A319541 3, 48, 180, 240, 105; %e A319541 6, 171, 1089, 2604, 2625, 945; %e A319541 11, 614, 6333, 24180, 42075, 34020, 10395; %e A319541 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135; %e A319541 ... %p A319541 A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0, %p A319541 (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2)) %p A319541 end: %p A319541 T:= (n, k)-> add((-1)^i*binomial(k, i)*A(n, k-i), i=0..k): %p A319541 seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Sep 23 2018 %t A319541 A[n_, k_] := A[n, k] = If[n<2, k n, If[OddQ[n], 0, (#(1-#)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]]; %t A319541 T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; %t A319541 Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 02 2019, after _Alois P. Heinz_ *) %o A319541 (PARI) \\ here R(n,k) is k-th column of A319539 as a vector. %o A319541 R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v} %o A319541 M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))} %o A319541 {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))} %Y A319541 Columns 1..5 are A001190, A220819, A220820, A220821, A220822. %Y A319541 Main diagonal is A001147. %Y A319541 Row sums give A319590. %Y A319541 Cf. A241555, A319376, A319539. %K A319541 nonn,tabl %O A319541 1,5 %A A319541 _Andrew Howroyd_, Sep 22 2018