This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319544 #13 Oct 05 2018 08:01:54 %S A319544 1,2,6,24,19,-6,-186,-1656,-1647,-1566,-666,10224,10211,10042,7494, %T A319544 -33456,-33439,-33150,-27642,82824,82803,82362,72198,-172200,-172175, %U A319544 -171550,-154650,319200,319171,318330,292230,-543840,-543807,-542718,-504570,869880 %N A319544 a(n) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13*14*15*16 + ... - (up to n). %C A319544 In general, for alternating sequences that multiply the first k natural numbers, and subtract/add the products of the next k natural numbers (preserving the order of operations up to n), we have a(n) = (-1)^floor(n/k) * Sum_{i=1..k-1} (1-sign((n-i) mod k)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/k)+1) * (1-sign(i mod k)) * (Product_{j=1..k} (i-j+1)). Here k=4. %C A319544 An alternating version of A319205. %F A319544 a(n) = (-1)^floor(n/4) * Sum_{i=1..3} (1-sign((n-i) mod 4)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/4)+1) * (1-sign(i mod 4)) * (Product_{j=1..4} (i-j+1)). %e A319544 a(1) = 1; %e A319544 a(2) = 1*2 = 2; %e A319544 a(3) = 1*2*3 = 6; %e A319544 a(4) = 1*2*3*4 = 24; %e A319544 a(5) = 1*2*3*4 - 5 = 19; %e A319544 a(6) = 1*2*3*4 - 5*6 = -6; %e A319544 a(7) = 1*2*3*4 - 5*6*7 = -186; %e A319544 a(8) = 1*2*3*4 - 5*6*7*8 = -1656; %e A319544 a(9) = 1*2*3*4 - 5*6*7*8 + 9 = -1647; %e A319544 a(10) = 1*2*3*4 - 5*6*7*8 + 9*10 = -1566; %e A319544 a(11) = 1*2*3*4 - 5*6*7*8 + 9*10*11 = -666; %e A319544 a(12) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 = 10224; %e A319544 a(13) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13 = 10211; %e A319544 a(14) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13*14 = 10042; %e A319544 a(15) = 1*2*3*4 - 5*6*7*8 + 9*10*11*12 - 13*14*15 = 7494; etc. %t A319544 a[n_]:=(-1)^Floor[n/4]*Sum[(1-Sign[Mod[n-i,4]])*Product[n-j+1,{j,1,i}],{i,1,3}]+Sum[(-1)^(Floor[i/4]+1)*(1-Sign[Mod[i,4]])*Product[i-j+1,{j,1,3}],{i,1,n}]; Array[a, 30] (* _Stefano Spezia_, Sep 23 2018 *) %Y A319544 For similar sequences, see: A001057 (k=1), A319373 (k=2), A319543 (k=3), this sequence (k=4), A319545 (k=5), A319546 (k=6), A319547 (k=7), A319549 (k=8), A319550 (k=9), A319551 (k=10). %Y A319544 Cf. A319205. %K A319544 sign,easy %O A319544 1,2 %A A319544 _Wesley Ivan Hurt_, Sep 22 2018