This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319550 #16 Oct 05 2024 14:31:34 %S A319550 1,2,6,24,120,720,5040,40320,362880,362870,362770,361560,345720, %T A319550 122640,-3240720,-57294720,-979816320,-17642862720,-17642862701, %U A319550 -17642862340,-17642854740,-17642687160,-17638824840,-17545953600,-15220134720,45348065280,1683112193280 %N A319550 a(n) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17*18 + 19*20*21*22*23*24*25*26*27 - ... + (up to n). %C A319550 In general, for alternating sequences that multiply the first k natural numbers, and subtract/add the products of the next k natural numbers (preserving the order of operations up to n), we have a(n) = (-1)^floor(n/k) * Sum_{i=1..k-1} (1-sign((n-i) mod k)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/k)+1) * (1-sign(i mod k)) * (Product_{j=1..k} (i-j+1)). Here k=9. %C A319550 An alternating version of A319211. %H A319550 Harvey P. Dale, <a href="/A319550/b319550.txt">Table of n, a(n) for n = 1..1000</a> %F A319550 a(n) = (-1)^floor(n/9) * Sum_{i=1..8} (1-sign((n-i) mod 9)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/9)+1) * (1-sign(i mod 9)) * (Product_{j=1..9} (i-j+1)). %e A319550 a(1) = 1; %e A319550 a(2) = 1*2 = 2; %e A319550 a(3) = 1*2*3 = 6; %e A319550 a(4) = 1*2*3*4 = 24; %e A319550 a(5) = 1*2*3*4*5 = 120; %e A319550 a(6) = 1*2*3*4*5*6 = 720; %e A319550 a(7) = 1*2*3*4*5*6*7 = 5040; %e A319550 a(8) = 1*2*3*4*5*6*7*8 = 40320; %e A319550 a(9) = 1*2*3*4*5*6*7*8*9 = 362880; %e A319550 a(10) = 1*2*3*4*5*6*7*8*9 - 10 = 362870; %e A319550 a(11) = 1*2*3*4*5*6*7*8*9 - 10*11 = 362770; %e A319550 a(12) = 1*2*3*4*5*6*7*8*9 - 10*11*12 = 361560; %e A319550 a(13) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13 = 345720; %e A319550 a(14) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14 = 122640; %e A319550 a(15) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15 = -3240720; %e A319550 a(16) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16 = -57294720; %e A319550 a(17) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17 = -979816320; %e A319550 a(18) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17*18 = -17642862720; %e A319550 a(19) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17*18 + 19 = -17642862701; etc. %t A319550 Table[Total[Times@@@Partition[Riffle[Times@@@Partition[Range[n],UpTo[9]],{1,-1},{1,-1,2}],2]],{n,30}] (* _Harvey P. Dale_, Oct 05 2024 *) %Y A319550 For similar sequences, see: A001057 (k=1), A319373 (k=2), A319543 (k=3), A319544 (k=4), A319545 (k=5), A319546 (k=6), A319547 (k=7), A319549 (k=8), this sequence (k=9), A319551 (k=10). %Y A319550 Cf. A319211. %K A319550 sign,easy %O A319550 1,2 %A A319550 _Wesley Ivan Hurt_, Sep 22 2018