cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319554 Expansion of 1/theta_4(q)^12 in powers of q = exp(Pi i t).

This page as a plain text file.
%I A319554 #16 Sep 24 2018 10:00:15
%S A319554 1,24,312,2912,21816,139152,783328,3986112,18650424,81251896,
%T A319554 332798544,1291339296,4776117216,16922753616,57683178432,189821722688,
%U A319554 604884735288,1871370360240,5633654421720,16535803556064,47405095227984,132942579098368,365211946954656
%N A319554 Expansion of 1/theta_4(q)^12 in powers of q = exp(Pi i t).
%H A319554 Seiichi Manyama, <a href="/A319554/b319554.txt">Table of n, a(n) for n = 0..10000</a>
%F A319554 Convolution inverse of A286346.
%F A319554 a(n) = (-1)^n * A004413(n).
%F A319554 a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
%F A319554 G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^12.
%o A319554 (PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^12))
%Y A319554 1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), A319553 (b=8), this sequence (b=12).
%Y A319554 Cf. A002131, A002448 (theta_4(q)), A004413, A286346.
%K A319554 nonn
%O A319554 0,2
%A A319554 _Seiichi Manyama_, Sep 22 2018