This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319557 #16 Jan 21 2023 17:58:25 %S A319557 1,1,2,5,12,30,91,256,823,2656,9103,31876,116113,432824,1659692, %T A319557 6508521,26112327,106927561,446654187,1900858001,8236367607, %U A319557 36306790636,162724173883,741105774720,3428164417401,16099059101049,76722208278328,370903316203353,1818316254655097 %N A319557 Number of non-isomorphic strict connected multiset partitions of weight n. %C A319557 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %C A319557 Also the number of non-isomorphic connected T_0 multiset partitions of weight n. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices. %H A319557 Andrew Howroyd, <a href="/A319557/b319557.txt">Table of n, a(n) for n = 0..50</a> %F A319557 Inverse Euler transform of A316980. %e A319557 Non-isomorphic representatives of the a(4) = 12 strict connected multiset partitions: %e A319557 {{1,1,1,1}} %e A319557 {{1,1,2,2}} %e A319557 {{1,2,2,2}} %e A319557 {{1,2,3,3}} %e A319557 {{1,2,3,4}} %e A319557 {{1},{1,1,1}} %e A319557 {{1},{1,2,2}} %e A319557 {{2},{1,2,2}} %e A319557 {{3},{1,2,3}} %e A319557 {{1,2},{2,2}} %e A319557 {{1,3},{2,3}} %e A319557 {{1},{2},{1,2}} %e A319557 Non-isomorphic representatives of the a(4) = 12 connected T_0 multiset partitions: %e A319557 {{1,1,1,1}} %e A319557 {{1,2,2,2}} %e A319557 {{1},{1,1,1}} %e A319557 {{1},{1,2,2}} %e A319557 {{2},{1,2,2}} %e A319557 {{1,1},{1,1}} %e A319557 {{1,2},{2,2}} %e A319557 {{1,3},{2,3}} %e A319557 {{1},{1},{1,1}} %e A319557 {{1},{2},{1,2}} %e A319557 {{2},{2},{1,2}} %e A319557 {{1},{1},{1},{1}} %Y A319557 Cf. A007716, A007718, A049311, A056156, A283877, A316980. %Y A319557 Cf. A319558, A319559, A319560, A319564, A319565, A319566, A319567. %K A319557 nonn %O A319557 0,3 %A A319557 _Gus Wiseman_, Sep 23 2018 %E A319557 Terms a(11) and beyond from _Andrew Howroyd_, Jan 19 2023