cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319560 Number of non-isomorphic strict T_0 multiset partitions of weight n.

This page as a plain text file.
%I A319560 #11 Dec 14 2024 09:17:08
%S A319560 1,1,2,6,15,40,121,353,1107,3550,11818
%N A319560 Number of non-isomorphic strict T_0 multiset partitions of weight n.
%C A319560 In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices.
%C A319560 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%e A319560 Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions:
%e A319560 1: {{1}}
%e A319560 2: {{1,1}}
%e A319560    {{1},{2}}
%e A319560 3: {{1,1,1}}
%e A319560    {{1,2,2}}
%e A319560    {{1},{1,1}}
%e A319560    {{1},{2,2}}
%e A319560    {{2},{1,2}}
%e A319560    {{1},{2},{3}}
%e A319560 4: {{1,1,1,1}}
%e A319560    {{1,2,2,2}}
%e A319560    {{1},{1,1,1}}
%e A319560    {{1},{1,2,2}}
%e A319560    {{1},{2,2,2}}
%e A319560    {{1},{2,3,3}}
%e A319560    {{2},{1,2,2}}
%e A319560    {{1,1},{2,2}}
%e A319560    {{1,2},{2,2}}
%e A319560    {{1,3},{2,3}}
%e A319560    {{1},{2},{1,2}}
%e A319560    {{1},{2},{2,2}}
%e A319560    {{1},{2},{3,3}}
%e A319560    {{1},{3},{2,3}}
%e A319560    {{1},{2},{3},{4}}
%Y A319560 Cf. A007716, A007718, A049311, A053419, A056156, A059201, A283877, A316980.
%Y A319560 Cf. A319557, A319558, A319559, A319564, A319565, A319566, A319567.
%K A319560 nonn,more
%O A319560 0,3
%A A319560 _Gus Wiseman_, Sep 23 2018