This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319560 #11 Dec 14 2024 09:17:08 %S A319560 1,1,2,6,15,40,121,353,1107,3550,11818 %N A319560 Number of non-isomorphic strict T_0 multiset partitions of weight n. %C A319560 In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices. %C A319560 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A319560 Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions: %e A319560 1: {{1}} %e A319560 2: {{1,1}} %e A319560 {{1},{2}} %e A319560 3: {{1,1,1}} %e A319560 {{1,2,2}} %e A319560 {{1},{1,1}} %e A319560 {{1},{2,2}} %e A319560 {{2},{1,2}} %e A319560 {{1},{2},{3}} %e A319560 4: {{1,1,1,1}} %e A319560 {{1,2,2,2}} %e A319560 {{1},{1,1,1}} %e A319560 {{1},{1,2,2}} %e A319560 {{1},{2,2,2}} %e A319560 {{1},{2,3,3}} %e A319560 {{2},{1,2,2}} %e A319560 {{1,1},{2,2}} %e A319560 {{1,2},{2,2}} %e A319560 {{1,3},{2,3}} %e A319560 {{1},{2},{1,2}} %e A319560 {{1},{2},{2,2}} %e A319560 {{1},{2},{3,3}} %e A319560 {{1},{3},{2,3}} %e A319560 {{1},{2},{3},{4}} %Y A319560 Cf. A007716, A007718, A049311, A053419, A056156, A059201, A283877, A316980. %Y A319560 Cf. A319557, A319558, A319559, A319564, A319565, A319566, A319567. %K A319560 nonn,more %O A319560 0,3 %A A319560 _Gus Wiseman_, Sep 23 2018