A319576 a(n) = (4/15)*n*(n - 1)*(n^3 - 9*n^2 + 26*n - 9).
0, 0, 8, 24, 48, 112, 312, 840, 2016, 4320, 8424, 15224, 25872, 41808, 64792, 96936, 140736, 199104, 275400, 373464, 497648, 652848, 844536, 1078792, 1362336, 1702560, 2107560, 2586168, 3147984, 3803408, 4563672, 5440872, 6448000, 7598976, 8908680, 10392984
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Maple
a := n -> (4/15)*n*(n - 1)*(n^3 - 9*n^2 + 26*n - 9): seq(a(n), n=0..41);
-
Mathematica
A319576[n_] := 4/15*n*(n-1)*(n^3-9*n^2+26*n-9); Array[A319576, 50, 0] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 8, 24, 48, 112}, 50] (* Paolo Xausa, Feb 20 2024 *)
-
PARI
concat([0,0], Vec(8*x^2*(1 - 3*x + 3*x^2 + 3*x^3) / (1 - x)^6 + O(x^40))) \\ Colin Barker, Oct 02 2018
Formula
a(n) = [x^5] JacobiTheta3(x)^n.
a(n) = A319574(n,5).
From Colin Barker, Oct 02 2018: (Start)
G.f.: 8*x^2*(1 - 3*x + 3*x^2 + 3*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)