cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319577 a(n) = (4/45)*n*(n - 2)*(n - 1)*(n^3 - 12*n^2 + 47*n - 15).

Original entry on oeis.org

0, 0, 0, 24, 96, 240, 544, 1288, 3136, 7392, 16320, 33528, 64416, 116688, 200928, 331240, 525952, 808384, 1207680, 1759704, 2508000, 3504816, 4812192, 6503112, 8662720, 11389600, 14797120, 19014840, 24189984, 30488976, 38099040, 47229864, 58115328, 71015296
Offset: 0

Views

Author

Peter Luschny, Oct 01 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A005843 (m=1), A046092 (m=2), A130809 (m=3), A319575 (m=4), A319576 (m=5), this sequence (m=6).
Column n=6 of A122141.
Cf. A319574.

Programs

  • Maple
    a := n -> (4/45)*n*(n - 2)*(n - 1)*(n^3 - 12*n^2 + 47*n - 15):
    seq(a(n), n=0..41);
  • Mathematica
    A319577[n_]:=4/45*n*(n-2)*(n-1)*(n^3-12*n^2+47*n-15); Array[A319577, 50, 0] (*or*)
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 24, 96, 240, 544}, 50] (* Paolo Xausa, Feb 20 2024 *)
  • PARI
    concat([0,0,0], Vec(8*x^3*(3 - 9*x + 9*x^2 + 5*x^3) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Oct 02 2018

Formula

a(n) = [x^6] JacobiTheta3(x)^n.
a(n) = A319574(n,6).
From Colin Barker, Oct 02 2018: (Start)
G.f.: 8*x^3*(3 - 9*x + 9*x^2 + 5*x^3) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6.
(End)