This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319584 #52 Jan 27 2024 17:19:05 %S A319584 0,1,3,5,63,65,195,325,341,4095,4097,4161,12291,12483,20485,20805, %T A319584 21525,21845,258111,262143,262145,266305,786435,798915,1310725, %U A319584 1311749,1331525,1332549,1376277,1377301,1397077,1398101,16515135,16777215,16777217,16781313 %N A319584 Numbers that are palindromic in bases 2, 4, and 8. %C A319584 Intersection of A006995, A014192, and A029803. %C A319584 From _A.H.M. Smeets_, Jun 08 2019: (Start) %C A319584 Intersection of A006995 and A259382. %C A319584 Intersection of A014192 and A259380. %C A319584 Intersection of A029803 and A097856. %C A319584 All repunit numbers in base 2 with 6*k digits are included in this sequence, i.e., all terms A000225(6*k) for k >= 0. %C A319584 All repunit numbers in base 4 with 2+3*k digits are included in this sequence, i.e., all terms A002450(2+3*k) for k >= 0. %C A319584 All terms A000051(6*k) for k > 0 are included in this sequence. %C A319584 All terms A052539(3*k) for k > 0 are included in this sequence. %C A319584 In general, for sequences with palindromic numbers in the set of bases {b, b^2, ..., b^k}, gaps of size 2 occur at the term pairs (b^(k!) - 1, b^(k!) + 1). See also A319598 for b = 2 and k = 4. %C A319584 The terms occur in bursts with large gaps in between as shown in the scatterplots of log_b(a(n)-a(n-1)) versus log_b(n) and log_b(1-a(n-1)/a(n)) versus log_b(n). Terms of this sequence are those with b = 2 and k = 3. For comparison, terms with b = 3 and k = 3 are also shown in these plots. %C A319584 (End) %H A319584 A.H.M. Smeets, <a href="/A319584/b319584.txt">Table of n, a(n) for n = 1..2298</a> %H A319584 A.H.M. Smeets, <a href="/A319584/a319584.gif">Scatterplot of log_b(a(n)-a(n-1)) versus log_b(n)</a> %H A319584 A.H.M. Smeets, <a href="/A319584/a319584_1.gif">Scatterplot of log_b(1-a(n-1)/a(n)) versus log_b(n)</a> %e A319584 89478485 = 101010101010101010101010101_2 = 11111111111111_4 = 525252525_8. %t A319584 palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]]; %t A319584 Reap[Do[If[palQ[n, 2] && palQ[n, 4] && palQ[n, 8], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* _Jean-François Alcover_, Sep 25 2018 *) %t A319584 Select[Range[0,168*10^5],AllTrue[Table[IntegerDigits[#,d],{d,{2,4,8}}],PalindromeQ]&] (* _Harvey P. Dale_, Jan 27 2024 *) %o A319584 (Sage) [n for n in (0..1000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(4)).is_palindrome() and Word(n.digits(8)).is_palindrome()] %o A319584 (Magma) [n: n in [0..2*10^7] | Intseq(n, 2) eq Reverse(Intseq(n, 2)) and Intseq(n, 4) eq Reverse(Intseq(n, 4)) and Intseq(n, 8) eq Reverse(Intseq(n, 8))]; // _Vincenzo Librandi_, Sep 24 2018 %o A319584 (Python) %o A319584 def nextpal(n, base): # m is the first palindrome successor of n in base base %o A319584 m, pl = n+1, 0 %o A319584 while m > 0: %o A319584 m, pl = m//base, pl+1 %o A319584 if n+1 == base**pl: %o A319584 pl = pl+1 %o A319584 n = n//(base**(pl//2))+1 %o A319584 m, n = n, n//(base**(pl%2)) %o A319584 while n > 0: %o A319584 m, n = m*base+n%base, n//base %o A319584 return m %o A319584 def rev(n, b): %o A319584 m = 0 %o A319584 while n > 0: %o A319584 n, m = n//b, m*b+n%b %o A319584 return m %o A319584 n, a = 1, 0 %o A319584 while n <= 100: %o A319584 if a == rev(a, 4) == rev(a, 2): %o A319584 print(a) %o A319584 n += 1 %o A319584 a = nextpal(a, 8) # _A.H.M. Smeets_, Jun 08 2019 %o A319584 (PARI) ispal(n, b) = my(d=digits(n, b)); Vecrev(d) == d; %o A319584 isok(n) = ispal(n, 2) && ispal(n, 4) && ispal(n, 8); \\ _Michel Marcus_, Jun 11 2019 %Y A319584 Cf. A006995 (base 2), A014192 (base 4), A029803 (base 8), A097956 (bases 2 and 4), A259380 (bases 2 and 8), A259382 (bases 4 and 8), A319598 (bases 2, 4, 8 and 16). %Y A319584 Cf. A000051, A000225, A002450, A052539. %K A319584 nonn,base %O A319584 1,3 %A A319584 _Jeremias M. Gomes_, Sep 23 2018