This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319587 #19 May 23 2022 16:36:59 %S A319587 3,261,110912,17895697067018274 %N A319587 The number of distinct solid nets of the six convex regular 4D-polytopes in the order of their 3D-cell count. %C A319587 These values have been taken from the Buekenhout (1998) paper (see link). During the unfolding of these solid nets along their common face, the possibility of any overlapping is ignored. %C A319587 This finite sequence is fully determined but a(5) and a(6) are too large to be displayed in data. See formulas below to calculate these terms. %H A319587 Andrey Zabolotskiy, <a href="/A319587/b319587.txt">Table of n, a(n) for n = 1..6</a> %H A319587 F. Buekenhout and M. Parker, <a href="https://doi.org/10.1016/S0012-365X(97)00225-2">The number of nets of the regular convex polytopes in dimension >= 4</a>, Discrete Mathematics 186 (1998) 69-94. %F A319587 a(1) = 3; %F A319587 a(2) = (82944 + 12*16 + 24*8 + 4*2304 + 6*128 + 12*96 + 12*192 + 12*288)/(2^7 * 3) = 261; %F A319587 a(3) = 2^5*(2^7 * 3^3 + 1 + 3^2) = 110912; %F A319587 a(4) = 6*(2^19 * 5688888889 + 347) = 17895697067018274; %F A319587 a(5) = 2^7 * 5^2 * 7^3 * (2^114 * 3^78 * 5^20 * 7^33 + 2^47 * 3^18 * 5^2 * 7^12 * 53^5 * 2311^3 + 239^2 * 3931^2); %F A319587 a(6) = 2^188 * 3^102 * 5^20 * 7^36 * 11^48 * 23^48 * 29^30. %t A319587 {3, (82944+12*16+24*8+4*2304+6*128+12*96+12*192+12*288)/(2^7*3), 2^5(2^7*3^3+1+3^2), 6(2^19*5688888889+347), 2^7*5^2*7^3(2^114*3^78*5^20*7^33+2^47*3^18*5^2*7^12*53^5*2311^3+239^2*3931^2), 2^188*3^102*5^20*7^36*11^48*23^48*29^30} %Y A319587 Cf. A091159, A201187. %K A319587 nonn,fini %O A319587 1,1 %A A319587 _Frank M Jackson_, Sep 23 2018