cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074787 Sum of squares of the number of unitary divisors of k from 1 to n.

Original entry on oeis.org

1, 5, 9, 13, 17, 33, 37, 41, 45, 61, 65, 81, 85, 101, 117, 121, 125, 141, 145, 161, 177, 193, 197, 213, 217, 233, 237, 253, 257, 321, 325, 329, 345, 361, 377, 393, 397, 413, 429, 445, 449, 513, 517, 533, 549, 565, 569, 585, 589, 605, 621, 637, 641, 657, 673
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Crossrefs

Equals 4*A069811(n) + 1, for n <= 29.

Programs

Formula

a(n) = Sum_{k=1..n} ud(k)^2 = Sum_{k=1..n} A034444(k)^2 . a(n) = Sum_{k=1..n} 2^(2*omega(k)) = Sum_{k=1..n} 2^(2*A001221(k)).
a(n) ~ c * n * log(n)^3, where c = (1/6) * Product_{p prime} ((1-1/p)^3*(1+3/p)) = A319592 / 6. - Amiram Eldar, Jul 02 2022

A320027 Decimal expansion of the probability that an integer 4-tuple is pairwise unitary coprime.

Original entry on oeis.org

1, 3, 7, 3, 1, 0, 6, 5, 1, 8, 0, 9, 0, 7, 3, 5, 9, 1, 8, 7, 1, 5, 8, 7, 4, 7, 0, 6, 1, 2, 4, 3, 5, 0, 1, 2, 3, 1, 9, 8, 5, 4, 4, 7, 2, 2, 1, 4, 5, 1, 6, 1, 5, 4, 3, 9, 9, 3, 9, 4, 4, 4, 4, 1, 5, 0, 4, 5, 6, 8, 1, 9, 6, 2, 8, 9, 6, 0, 8, 2, 7, 5, 7, 5, 4, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Aug 27 2019

Keywords

Comments

Two numbers are unitary coprime if their largest common unitary divisor is 1.

Examples

			0.137310651809073591871587470612435012319854472214516...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 54.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm = 1000; f[x_] := 1 - 8*x^2 + 3*x^3 + 27*x^4 - 24*x^5 - 14*x^6 - 3*x^7 + 37*x^8 - 30*x^9 + 42*x^10 - 33*x^11 - 41*x^12 + 78*x^13 - 44*x^14 + 9*x^15; c = LinearRecurrence[{-3, 2, 11, -3, -16, -14, 6, 7, 19, 0, -17, 9}, {0, -16, 9, -20, 0, 161, -588, 2116, -5859, 15104, -34716, 70609}, nm]; RealDigits[Zeta[2]^2*Zeta[3]*Zeta[4]*f[1/2]*f[1/3]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
  • PARI
    zeta(2)^2 * zeta(3) * zeta(4) * prodeulerrat(1-8/p^2+3/p^3+27/p^4-24/p^5-14/p^6-3/p^7+37/p^8-30/p^9+42/p^10-33/p^11-41/p^12+78/p^13-44/p^14+9/p^15) \\ Amiram Eldar, Jun 29 2023

Formula

Equals zeta(2)^2 * zeta(3) * zeta(4) * Product_{p prime} (1 - 8/p^2 + 3/p^3 + 27/p^4 - 24/p^5 - 14/p^6 - 3/p^7 + 37/p^8 - 30/p^9 + 42/p^10 - 33/p^11 - 41/p^12 + 78/p^13 - 44/p^14 + 9/p^15).
Showing 1-2 of 2 results.