cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319593 Decimal expansion of the probability that an integer triple is pairwise unitary coprime.

This page as a plain text file.
%I A319593 #24 Jun 29 2023 09:03:19
%S A319593 5,5,2,3,0,6,9,0,4,1,5,7,9,4,2,8,1,1,1,8,3,2,2,7,3,4,7,3,0,9,2,6,4,7,
%T A319593 0,8,5,3,5,4,5,5,8,3,1,4,0,4,4,9,7,6,0,7,3,3,0,2,2,7,0,0,8,0,1,5,5,3,
%U A319593 7,3,7,2,1,4,2,7,3,8,5,3,2,0,9,4,0,6,1
%N A319593 Decimal expansion of the probability that an integer triple is pairwise unitary coprime.
%C A319593 Two numbers are unitary coprime if their largest common unitary divisor is 1.
%D A319593 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 54.
%H A319593 László Tóth, <a href="https://doi.org/10.1007/978-1-4939-1106-6_19">Multiplicative arithmetic functions of several variables: a survey</a>, in Themistocles M. Rassias and Panos M. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, NY, 2014, pp. 483-514 (see p. 509), <a href="https://arxiv.org/abs/1310.7053">preprint</a>, arXiv:1310.7053 [math.NT], 2013-2014 (see p. 22).
%F A319593 Equals zeta(2) * zeta(3) * Product_{p prime} (1 - 4/p^2 + 7/p^3 - 9/p^4 + 8/p^5 - 2/p^6 - 3/p^7 + 2/p^8).
%e A319593 0.552306904157942811183227347309264708535455831404497...
%t A319593 $MaxExtraPrecision = 1000; nm = 1000; f[x_] := 1 - 4*x^2 + 7*x^3 - 9*x^4 + 8*x^5 - 2*x^6 - 3*x^7 + 2*x^8; c = LinearRecurrence[{-1, 3, -4, 5, -3, -1, 2}, {0, -8, 21, -68, 180, -503, 1428}, nm]; RealDigits[f[1/2] * f[1/3] * Zeta[2] * Zeta[3] * Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
%o A319593 (PARI) zeta(2) * zeta(3) * prodeulerrat(1-4/p^2+7/p^3-9/p^4+8/p^5-2/p^6-3/p^7+2/p^8) \\ _Amiram Eldar_, Jun 29 2023
%Y A319593 Cf. A065473, A077610, A306071.
%K A319593 nonn,cons
%O A319593 0,1
%A A319593 _Amiram Eldar_, Aug 27 2019