This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319596 #54 Jan 14 2022 10:34:35 %S A319596 2,5,7,11,17,19,23,29,47,53,59,61,71,73,83,89,101,107,137,167,173,179, %T A319596 181,191,197,223,233,251,263,269,317,431,461,491,503,509,521,541,547, %U A319596 557,569,587,593,653,659,673,677,683,701,709,719,809,911,947,953 %N A319596 Base-3 deletable primes (written in base 10). %C A319596 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. %C A319596 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %H A319596 Robert Israel, <a href="/A319596/b319596.txt">Table of n, a(n) for n = 1..10000</a> (first 177 terms from Robert Price) %p A319596 S:= {2}: count:= 0: %p A319596 p:= 2; %p A319596 while count < 200 do %p A319596 p:= nextprime(p); %p A319596 d:= floor(log[3](p)); %p A319596 for i from 0 to d do %p A319596 x:= p mod 3^(i+1); %p A319596 q:= (x mod 3^i) + (p-x)/3; %p A319596 if q >= 3^(d-1) and member(q,S) then %p A319596 S:= S union {p}; count:= count+1; break %p A319596 fi %p A319596 od; %p A319596 od: %p A319596 sort(convert(S,list)); # _Robert Israel_, Nov 26 2020 %t A319596 b = 3; d = {}; %t A319596 p = Select[Range[2, 10000], PrimeQ[#] &]; %t A319596 For[i = 1, i <= Length[p], i++, %t A319596 c = IntegerDigits[p[[i]], b]; %t A319596 If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]]; %t A319596 For[j = 1, j <= Length[c], j++, %t A319596 t = Delete[c, j]; %t A319596 If[t[[1]] == 0, Continue[]]; %t A319596 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; %t A319596 d (* _Robert Price_, Dec 05 2018 *) %o A319596 (Python) %o A319596 from sympy import isprime %o A319596 from sympy.ntheory.digits import digits %o A319596 def ok(n, base=3): %o A319596 if not isprime(n): return False %o A319596 if n < 3: return True %o A319596 s = "".join(str(d) for d in digits(n, base)[1:]) %o A319596 si = (s[:i]+s[i+1:] for i in range(len(s))) %o A319596 return any(t[0] != '0' and ok(int(t, base)) for t in si) %o A319596 print([k for k in range(954) if ok(k)]) # _Michael S. Branicky_, Jan 14 2022 %Y A319596 Cf. A080608, A080603, A096235-A096246. %K A319596 nonn,base,easy %O A319596 1,1 %A A319596 _Robert Price_, Nov 14 2018 %E A319596 Removed the term 3. As pointed out by _Kevin Ryde_, there is no need to "seed" the list using base-2 assumptions. - _Robert Price_, Dec 05 2018