A319599 Numbers k such that k mod (2, 3, 4, ... , i+1) = (d_i, d_i-1, ..., d_1), where d_1, d_2, ..., d_i are the digits of k, with MSD(k) = d_1 and LSD(k) = d_i.
0, 1, 10, 20, 1101, 1121, 11311, 31101, 40210, 340210, 4620020, 5431101, 7211311, 12040210, 24120020, 151651121, 165631101, 1135531101, 8084220020, 9117311311, 894105331101
Offset: 0
Examples
a(11) = 5431101 because: 5431101 mod 2 = 1, 5431101 mod 3 = 0, 5431101 mod 4 = 1, 5431101 mod 5 = 1, 5431101 mod 6 = 3, 5431101 mod 7 = 4, 5431101 mod 8 = 5.
Programs
-
Maple
P:=proc(q) local a,i,j,n,ok; print(0); print(1); for n from 1 to q do for i from 0 to 1 do a:=10*n+i; ok:=1; for j from 1 to ilog10(a)+1 do if (a mod 10)<>((10*n+i) mod (j+1)) then ok:=0; break; else a:=trunc(a/10); fi; od; if ok=1 then print(10*n+i); break; fi; od; od; end: P(10^12);