This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319600 #19 Feb 18 2025 08:10:44 %S A319600 1,0,1,0,3,4,0,6,22,18,0,13,96,198,120,0,24,330,1272,1800,840,0,48, %T A319600 1146,7518,19152,20640,7920,0,86,3518,36684,148200,274080,234720, %U A319600 75600,0,160,10946,177438,1080960,3083640,4462560,3180240,887040,0,282,32102,788928,6952440,28621920,62056080,73175760,44432640,10886400 %N A319600 Number T(n,k) of plane partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A319600 Alois P. Heinz, <a href="/A319600/b319600.txt">Rows n = 0..50, flattened</a> %H A319600 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PlanePartition.html">Plane partition</a> %H A319600 Wikipedia, <a href="https://en.wikipedia.org/wiki/Plane_partition">Plane partition</a> %F A319600 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A306100(n,k-i). %F A319600 T(n,k) = k! * A319730(n,k). %e A319600 Triangle T(n,k) begins: %e A319600 1; %e A319600 0, 1; %e A319600 0, 3, 4; %e A319600 0, 6, 22, 18; %e A319600 0, 13, 96, 198, 120; %e A319600 0, 24, 330, 1272, 1800, 840; %e A319600 0, 48, 1146, 7518, 19152, 20640, 7920; %e A319600 0, 86, 3518, 36684, 148200, 274080, 234720, 75600; %e A319600 0, 160, 10946, 177438, 1080960, 3083640, 4462560, 3180240, 887040; %e A319600 ... %Y A319600 Columns k=0-1 give: A000007, A000219 (for n>0). %Y A319600 Row sums give A319601. %Y A319600 Main diagonal gives A053529. %Y A319600 Cf. A255970, A319730. %K A319600 nonn,tabl %O A319600 0,5 %A A319600 _Alois P. Heinz_, Sep 24 2018