cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319608 Irregular triangle read by rows: T(n,k) is the number of irreducible numerical semigroups with Frobenius number n and k minimal generators less than n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 5, 2, 1, 4, 1, 1, 4, 2, 1, 4, 2, 1, 7, 6, 1, 1, 4, 2, 1, 8, 9, 2, 1, 5, 4, 1, 1, 7, 8, 2, 1, 8, 9, 2, 1, 10, 17, 7, 1, 1, 5, 6, 2, 1, 10, 19, 12, 2, 1, 10, 16, 7, 1, 1, 10, 21, 11, 2, 1, 9, 16, 9, 2, 1, 13, 34, 26, 8, 1, 1, 8, 15, 10, 2, 1, 14, 41, 37, 14, 2
Offset: 1

Views

Author

Christopher O'Neill, Sep 24 2018

Keywords

Comments

The length of each row is floor((n+1)/2) - floor(n/3).
Summing rows yields A158206.
The expected number of minimal generators of a randomly selected numerical semigroup S(M,p) equals Sum_{n=1..M} ( p * (1 - p)^(floor(n/2)) * Product_{k>=0} T(n,k)*p^k ).

Examples

			T(13,2) = 2, since {5,6,9} and {7,8,9,10,11,12} minimally generate irreducible numerical semigroups with Frobenius number 13.
When written in rows:
  1
  1
  1
  1
  1,  1
  1
  1,  2
  1,  1
  1,  2
  1,  2
  1,  4,  1
  1,  1
  1,  5,  2
  1,  4,  1
  1,  4,  2
  1,  4,  2
  1,  7,  6,  1
  1,  4,  2
  1,  8,  9,  2
  1,  5,  4,  1
  1,  7,  8,  2
  1,  8,  9,  2
  1, 10, 17,  7,  1
  1,  5,  6,  2
  1, 10, 19, 12,  2
  1, 10, 16,  7,  1
  1, 10, 21, 11,  2
  1,  9, 16,  9,  2
  1, 13, 34, 26,  8,  1
  1,  8, 15, 10,  2
		

Crossrefs