This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319616 #24 Jan 16 2024 22:05:05 %S A319616 1,1,2,4,11,27,80,230,719,2271,7519,25425,88868,317972,1168360, %T A319616 4392724,16903393,66463148,266897917,1093550522,4568688612, %U A319616 19448642187,84308851083,371950915996,1669146381915,7615141902820,35304535554923,166248356878549,794832704948402,3856672543264073,18984761300310500 %N A319616 Number of non-isomorphic square multiset partitions of weight n. %C A319616 A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices. %C A319616 Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns. %H A319616 Andrew Howroyd, <a href="/A319616/b319616.txt">Table of n, a(n) for n = 0..50</a> %e A319616 Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions: %e A319616 1: {{1}} %e A319616 2: {{1,1}} %e A319616 {{1}, {2}} %e A319616 3: {{1,1,1}} %e A319616 {{1}, {2,2}} %e A319616 {{2}, {1,2}} %e A319616 {{1}, {2},{3}} %e A319616 4: {{1,1,1,1}} %e A319616 {{1}, {1,2,2}} %e A319616 {{1}, {2,2,2}} %e A319616 {{2}, {1,2,2}} %e A319616 {{1,1}, {2,2}} %e A319616 {{1,2}, {1,2}} %e A319616 {{1,2}, {2,2}} %e A319616 {{1}, {1}, {2,3}} %e A319616 {{1}, {2}, {3,3}} %e A319616 {{1}, {3}, {2,3}} %e A319616 {{1}, {2}, {3}, {4}} %e A319616 Non-isomorphic representatives of the a(4) = 11 square matrices: %e A319616 . [4] %e A319616 . %e A319616 . [1 0] [1 0] [0 1] [2 0] [1 1] [1 1] %e A319616 . [1 2] [0 3] [1 2] [0 2] [1 1] [0 2] %e A319616 . %e A319616 . [1 0 0] [1 0 0] [1 0 0] %e A319616 . [1 0 0] [0 1 0] [0 0 1] %e A319616 . [0 1 1] [0 0 2] [0 1 1] %e A319616 . %e A319616 . [1 0 0 0] %e A319616 . [0 1 0 0] %e A319616 . [0 0 1 0] %e A319616 . [0 0 0 1] %t A319616 (* See A318795 for M[m, n, k]. *) %t A319616 T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n]; %t A319616 a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}]; %t A319616 Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* _Jean-François Alcover_, Nov 24 2018, after _Andrew Howroyd_ *) %o A319616 (PARI) \\ See A318795 for M. %o A319616 a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ _Andrew Howroyd_, Nov 15 2018 %o A319616 (PARI) \\ See A340652 for G. %o A319616 seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ _Andrew Howroyd_, Jan 15 2024 %Y A319616 Row sums of A321615. %Y A319616 Cf. A000219, A007716, A007718, A056156, A059201, A316980, A316983, A318795, A319560, A319616-A319646, A300913. %K A319616 nonn %O A319616 0,3 %A A319616 _Gus Wiseman_, Sep 25 2018 %E A319616 a(11)-a(20) from _Andrew Howroyd_, Nov 15 2018 %E A319616 a(21) onwards from _Andrew Howroyd_, Jan 15 2024