This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319617 #7 Jan 30 2019 06:21:25 %S A319617 0,1,65,321,1257,2873,6265,11377,20161,31665,48945,71401,102041, %T A319617 139481,188753,247329,323697,409457,516121,640393,789161,955793, %U A319617 1153025,1376305,1637929,1921049,2252889,2615673,3033665,3483633,3990753,4547945,5173145,5840393,6589945,7395921,8287297,9238001,10281977,11402457,12633145,13929377 %N A319617 Number of Integer solutions to w^2 + x^2 + y^2 + z^2 < n^2; number of lattice points inside a 4-sphere of radius n. %e A319617 For n=2 there are 65 lattice points in Z^4 such that w^2+x^2+y^2+x^2 < 4 %o A319617 (Python) %o A319617 for n in range (0,51): %o A319617 NumPoints=0 %o A319617 for w in range (-n,n+1): %o A319617 for x in range (-n,n+1): %o A319617 for y in range (-n,n+1): %o A319617 for z in range (-n,n+1): %o A319617 if w**2+x**2+y**2+z**2<n**2: %o A319617 NumPoints+=1 %o A319617 print (n,NumPoints) %Y A319617 a(n) = A055410(n) - A267326(n). %K A319617 nonn,easy %O A319617 0,3 %A A319617 _Brian J. Harrild_, Sep 24 2018