This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319646 #13 Jun 21 2021 23:30:37 %S A319646 1,1,1,4,4,9,17,28,41,75,122,192,314,484,771,1216,1861,2848,4395,6610, %T A319646 10037 %N A319646 Number of non-isomorphic weight-n chains of distinct multisets whose dual is also a chain of distinct multisets. %C A319646 The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. %C A319646 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %C A319646 From _Gus Wiseman_, Jan 17 2019: (Start) %C A319646 Also the number of plane partitions of n with no repeated rows or columns. For example, the a(6) = 17 plane partitions are: %C A319646 6 51 42 321 %C A319646 . %C A319646 5 4 41 31 32 31 22 221 211 %C A319646 1 2 1 2 1 11 2 1 11 %C A319646 . %C A319646 3 21 21 111 %C A319646 2 2 11 11 %C A319646 1 1 1 1 %C A319646 (End) %e A319646 Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 chains: %e A319646 1: {{1}} %e A319646 2: {{1,1}} %e A319646 3: {{1,1,1}} %e A319646 {{1,2,2}} %e A319646 {{1},{1,1}} %e A319646 {{2},{1,2}} %e A319646 4: {{1,1,1,1}} %e A319646 {{1,2,2,2}} %e A319646 {{1},{1,1,1}} %e A319646 {{2},{1,2,2}} %e A319646 5: {{1,1,1,1,1}} %e A319646 {{1,1,2,2,2}} %e A319646 {{1,2,2,2,2}} %e A319646 {{1},{1,1,1,1}} %e A319646 {{2},{1,1,2,2}} %e A319646 {{2},{1,2,2,2}} %e A319646 {{1,1},{1,1,1}} %e A319646 {{1,2},{1,2,2}} %e A319646 {{2,2},{1,2,2}} %t A319646 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A319646 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A319646 ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; %t A319646 Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,UnsameQ@@Transpose[PadRight[#]],And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}] (* _Gus Wiseman_, Jan 18 2019 *) %Y A319646 Cf. A000219, A003293, A007716, A059201, A283877, A316980, A316983, A318099, A319558, A319616-A319646. %Y A319646 Cf. A000085, A138178, A323436. %K A319646 nonn,more %O A319646 0,4 %A A319646 _Gus Wiseman_, Sep 25 2018 %E A319646 a(11)-a(17) from _Gus Wiseman_, Jan 18 2019 %E A319646 a(18)-a(21) from _Robert Price_, Jun 21 2021