cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319648 Total number of parts in all plane partitions of n.

This page as a plain text file.
%I A319648 #13 Oct 04 2018 10:47:30
%S A319648 0,1,5,14,38,85,196,401,830,1615,3119,5802,10718,19246,34276,59889,
%T A319648 103656,176801,299025,499732,828638,1360696,2218128,3586194,5759839,
%U A319648 9184715,14557974,22929745,35916469,55942850,86695329,133671740,205144324,313380895,476667370
%N A319648 Total number of parts in all plane partitions of n.
%H A319648 Alois P. Heinz, <a href="/A319648/b319648.txt">Table of n, a(n) for n = 0..50</a>
%F A319648 a(n) = Sum_{k=1..n} k*A091298(n,k). - _M. F. Hasler_, Sep 27 2018
%e A319648 The plane partitions of 2 are [2], [1 1] and [1; 1]. There is a total of a(2) = 5 parts. - _M. F. Hasler_, Sep 27 2018
%o A319648 (PARI) A319648(n)={vecsum(apply(pp->vecsum(apply(p->#p,pp)),PlanePartitions(n)))} \\ See A091298 for PlanePartitions(). For illustration mainly, becomes slow for n > 15. - _M. F. Hasler_, Sep 27 2018
%o A319648 (PARI) M319648=[]; A319648(n,L=0,s)={if(L, n>1||return([1,1]); #L>2||(s=setsearch(M319648,[[n,L],[]],1))>#M319648|| M319648[s][1]!=[n,L]|| return(M319648[s][2]); my(S=[1,n]); for(m=2,n, forpart(P=m, vecmin(L-Vecrev(P,#L))<0&&next; S+=if(m<n,A319648(n-m,Vecrev(P))*[1,#P;0,1],[1,#P]),L[1],#L)); #L>2|| M319648=setunion(M319648,[[[n,L],S]]); S, my(S=n); n>1&& forpart(P=n,S+=#P); for(m=2,n-1,forpart(P=m,S+=A319648(n-m,Vecrev(P))*[#P,1]~));S)} \\ _M. F. Hasler_, Sep 30 2018
%Y A319648 Row sums of A092288.
%Y A319648 Cf. A000219.
%K A319648 nonn
%O A319648 0,3
%A A319648 _Alois P. Heinz_, Sep 25 2018