This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319649 #56 Oct 24 2023 15:43:08 %S A319649 1,1,3,1,4,5,1,6,8,8,1,10,16,15,10,1,18,38,37,21,14,1,34,100,111,63, %T A319649 33,16,1,66,278,373,237,113,41,20,1,130,796,1335,999,489,163,56,23,1, %U A319649 258,2318,4957,4461,2393,833,248,69,27,1,514,6820,18831,20583,12513,4795,1418,339,87,29 %N A319649 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} j^k * floor(n/j). %H A319649 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A319649 G.f. of column k: (1/(1 - x)) * Sum_{j>=1} j^k*x^j/(1 - x^j). %F A319649 A(n,k) = Sum_{j=1..n} sigma_k(j). %e A319649 Square array begins: %e A319649 1, 1, 1, 1, 1, 1, ... %e A319649 3, 4, 6, 10, 18, 34, ... %e A319649 5, 8, 16, 38, 100, 278, ... %e A319649 8, 15, 37, 111, 373, 1335, ... %e A319649 10, 21, 63, 237, 999, 4461, ... %e A319649 14, 33, 113, 489, 2393, 12513, ... %t A319649 Table[Function[k, Sum[j^k Floor[n/j] , {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten %t A319649 Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten %t A319649 Table[Function[k, Sum[DivisorSigma[k, j], {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten %o A319649 (Python) %o A319649 from itertools import count, islice %o A319649 from math import isqrt %o A319649 from sympy import bernoulli %o A319649 def A319649_T(n,k): return (((s:=isqrt(n))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)+1)-bernoulli(k+1)+bernoulli(k+1,q+1) for w in range(1,s+1)))//(k+1) + int(k==0) %o A319649 def A319649_gen(): # generator of terms %o A319649 return (A319649_T(k+1,n-k-1) for n in count(1) for k in range(n)) %o A319649 A319649_list = list(islice(A319649_gen(),30)) # _Chai Wah Wu_, Oct 24 2023 %Y A319649 Columns k=0..5 give A006218, A024916, A064602, A064603, A064604, A248076. %Y A319649 Cf. A082771, A109974, A319194 (diagonal). %K A319649 nonn,tabl %O A319649 1,3 %A A319649 _Ilya Gutkovskiy_, Dec 09 2018