This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319658 #22 Jun 29 2023 13:32:29 %S A319658 1,3,1,2,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A319658 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A319658 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A319658 a(n) is the minimal number of successive ON cells that appears in n-th generation of rule-30 1D cellular automaton started from a single ON cell. %H A319658 Charlie Neder, <a href="/A319658/a319658.png">Repeating pattern of length-1 runs</a> %H A319658 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A319658 G.f.: 1/(1 - x) + 2 x + x^3 + x^5 + x^7 + x^13 (conjectured). %F A319658 For n > 14, a(n)=1 at least until n = 10000. %F A319658 It is conjectured that for all n >= 15, a(n)=1. %F A319658 A period-4 pattern of length-1 runs beginning on row 19 forces a(n) = 1 for all n >= 19 (see image). - _Charlie Neder_, Dec 15 2018 %e A319658 The Rule-30 1D cellular automaton started from a single ON (.) cell generates the following triangle: %e A319658 1 . a(1)= (1) %e A319658 2 . . . a(2)= (3) %e A319658 3 . . 0 0 . a(3)= (1) %e A319658 4 . . 0 . . . . a(4)= (2) %e A319658 5 . . 0 0 . 0 0 0 . a(5)= (1) %e A319658 6 . . 0 . . . . 0 . . . a(6)= (2) %e A319658 7 . . 0 0 . 0 0 0 0 . 0 0 . a(7)= (1) %e A319658 8 . . 0 . . . . 0 0 . . . . . . a(8)= (2) %e A319658 9 . . 0 0 . 0 0 0 . . . 0 0 0 0 0 . a(9)= (1) %e A319658 10 . . 0 . . . . 0 . . 0 0 . 0 0 0 . . . a(10)=(1) %e A319658 11 . . 0 0 . 0 0 0 0 . 0 . . . . 0 . . 0 0 . a(11)=(1) %e A319658 12 . . 0 . . . . 0 0 . . 0 . 0 0 0 0 . 0 . . . . a(12)=(1) %e A319658 13 . . 0 0 . 0 0 0 . . . 0 0 . . 0 0 . . 0 . 0 0 0 . a(13)=(1) %t A319658 CellularAutomaton[30, {{1}, 0}, 100]; %t A319658 (Reverse[Internal`DeleteTrailingZeros[ %t A319658 Reverse[Internal`DeleteTrailingZeros[#]]]]) & /@ %; %t A319658 Table[Length /@ Select[%[[i]] // Split, Total[#] > 0 &] // Min, {i, %t A319658 1, % // Length}] %Y A319658 Cf. A319610, A319610, A100053. %K A319658 nonn %O A319658 1,2 %A A319658 _Philipp O. Tsvetkov_, Sep 25 2018