This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319661 #30 Feb 24 2021 08:17:30 %S A319661 0,0,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,1,2,1,1,2,1,1,1,2,2,2,2,1,1,2,2,1, %T A319661 2,1,1,2,1,1,1,2,3,1,1,2,1,2,1,1,2,2,2,1,1,2,2,1,2,1,1,2,1,1,2,3,1,2, %U A319661 1,2,2,1,1,2,2,2,2,1,1,1,2,1,2,1,2,3,2 %N A319661 2-rank of the class group of imaginary quadratic field with discriminant -k, k = A191483(n). %C A319661 The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003642). %H A319661 Rick L. Shepherd, <a href="https://libres.uncg.edu/ir/uncg/listing.aspx?id=15057">Binary quadratic forms and genus theory</a>, Master of Arts Thesis, University of North Carolina at Greensboro, 2013. %F A319661 a(n) = log_2(A003642(n)) = omega(A191483(n)) - 1, where omega(k) is the number of distinct prime divisors of k. %t A319661 PrimeNu[Select[Range[1000], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&]] - 1 (* _Jean-François Alcover_, Aug 02 2019, after _Andrew Howroyd_ in A191483 *) %o A319661 (PARI) for(n=1, 1000, if(isfundamental(-n) && n%2==0, print1(omega(n) - 1, ", "))) %o A319661 (Sage) %o A319661 def A319661_list(len): %o A319661 L = [] %o A319661 for n in range(2, len+1, 2): %o A319661 if is_fundamental_discriminant(-n): %o A319661 L.append(sloane.A001221(n) - 1) %o A319661 return L %o A319661 print(A319661_list(854)) # _Peter Luschny_, Oct 15 2018 %Y A319661 Cf. A003642, A191483, A319659, A319660. %K A319661 nonn %O A319661 1,9 %A A319661 _Jianing Song_, Sep 25 2018