A319662 2-rank of the class group of Q(sqrt(-k)), k squarefree.
0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 0, 3, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1, 2, 0, 2
Offset: 1
Keywords
Links
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
Programs
-
Mathematica
PrimeNu[#*If[Mod[-#, 4]>1, 4, 1]] - 1& /@ Select[Range[200], SquareFreeQ] (* Jean-François Alcover, Aug 02 2019 *)
-
PARI
for(n=1, 200, if(issquarefree(n), print1(omega(n*if((-n)%4>1, 4, 1)) - 1, ", ")))
-
Sage
def A319662_list(len): L = [] for n in (1..len): if is_squarefree(n): if (-n) % 4 > 1: n <<= 2 L.append(sloane.A001221(n) - 1) return L print(A319662_list(141)) # Peter Luschny, Oct 15 2018
Comments