This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319676 #16 Nov 21 2022 09:39:16 %S A319676 1,1,2,3,4,1,6,7,8,2,10,1,12,3,8,15,16,4,18,3,4,5,22,7,24,6,26,9,28,4, %T A319676 30,31,20,8,24,2,36,9,8,7,40,2,42,15,32,11,46,5,48,12,32,9,52,13,8,3, %U A319676 12,14,58,2,60,15,16,63,48,10,66,12,44,12,70,7,72,18,16 %N A319676 Numerator of A047994(n)/n where A047994 is the unitary totient function. %F A319676 a(p) = p-1, for p prime (see A006093). %F A319676 a(A002110(n)) = A038110(n). %F A319676 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A319677(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.7044422... (A065463). - _Amiram Eldar_, Nov 21 2022 %t A319676 uphi[n_] := Product[{p, e} = pe; p^e - 1, {pe, FactorInteger[n]}]; %t A319676 a[n_] := If[n == 1, 1, Numerator[uphi[n]/n]]; %t A319676 Array[a, 100] (* _Jean-François Alcover_, Jan 10 2022 *) %o A319676 (PARI) a(n)=my(f=factor(n)~); numerator(prod(i=1, #f, f[1, i]^f[2, i]-1)/n); %Y A319676 Cf. A047994, A030163, A065463, A305678, A319481, A319677 (denominators). %Y A319676 Cf. A002110, A038110, A006093. %K A319676 nonn,frac %O A319676 1,3 %A A319676 _Michel Marcus_, Sep 26 2018