cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319678 Numbers with property that the first digit is the length of the number (written in base 10).

This page as a plain text file.
%I A319678 #29 Jan 20 2021 10:20:16
%S A319678 1,20,21,22,23,24,25,26,27,28,29,300,301,302,303,304,305,306,307,308,
%T A319678 309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,
%U A319678 326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350
%N A319678 Numbers with property that the first digit is the length of the number (written in base 10).
%C A319678 The last term of this sequence is a(111111111) = 999999999.
%C A319678 Numbers n such that A000030(n) = A055642(n). - _Felix Fröhlich_, Sep 27 2018
%H A319678 Muniru A Asiru, <a href="/A319678/b319678.txt">Table of n, a(n) for n = 1..1111</a>
%e A319678 300 belongs to the sequence since its initial digit is 3 and the number has three digits. 3001 does not belong to the sequence since its initial digit is 3, but the number has four digits in total.
%t A319678 Select[Range[1000], IntegerDigits[#][[1]] == Length[IntegerDigits[#]] &] (* _Alonso del Arte_, Dec 24 2018 *)
%o A319678 (GAP) P:=List([1..340],ListOfDigits);;
%o A319678 a:=Filtered([1..Length(P)],i->P[i][1]=Size(P[i])); # _Muniru A Asiru_, Sep 26 2018
%o A319678 (PARI) is(n) = #digits(n)==digits(n)[1] \\ _Felix Fröhlich_, Sep 27 2018
%o A319678 (PARI) a(n,base=10) = for (w=1, oo, my (c=base^(w-#digits(w,base))); if (n<=c, return (c*w+n-1), n-=c)) \\ _Rémy Sigrist_, Dec 25 2018
%o A319678 (Python)
%o A319678 def ok(n): strn = str(n); return int(strn[0]) == len(strn)
%o A319678 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
%o A319678 print(aupto(350)) # _Michael S. Branicky_, Jan 20 2021
%Y A319678 Cf. A000030, A055642, A098955.
%K A319678 base,easy,nonn,fini
%O A319678 1,2
%A A319678 _Halfdan Skjerning_, Sep 26 2018