cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319707 Filter sequence which records for primes their residue modulo 6, and for all other numbers assigns a unique number.

This page as a plain text file.
%I A319707 #8 Oct 05 2018 11:10:26
%S A319707 1,2,3,4,5,6,7,8,9,10,5,11,7,12,13,14,5,15,7,16,17,18,5,19,20,21,22,
%T A319707 23,5,24,7,25,26,27,28,29,7,30,31,32,5,33,7,34,35,36,5,37,38,39,40,41,
%U A319707 5,42,43,44,45,46,5,47,7,48,49,50,51,52,7,53,54,55,5,56,7,57,58,59,60,61,7,62,63,64,5,65,66,67,68,69,5,70,71,72,73,74,75,76,7,77,78,79,5,80,7,81,82,83,5,84,7,85,86,87,5,88,89,90,91,92,93,94,95
%N A319707 Filter sequence which records for primes their residue modulo 6, and for all other numbers assigns a unique number.
%C A319707 Restricted growth sequence transform of function f defined as f(n) = A010875(n) when n is a prime, otherwise -n.
%C A319707 Primes of the form 6k+5 (A007528) get value 5, and the primes of the form 6k+1 (A002476) get value 7, while for all other n, a(n) is assigned to a unique running count.
%C A319707 For all i, j:
%C A319707   a(i) = a(j) => A010875(i) = A010875(j),
%C A319707   a(i) = a(j) => A305900(i) = A305900(j),
%C A319707   a(i) = a(j) => A319717(i) = A319717(j) => A319716(i) = A319716(j).
%H A319707 Antti Karttunen, <a href="/A319707/b319707.txt">Table of n, a(n) for n = 1..100000</a>
%o A319707 (PARI)
%o A319707 up_to = 100000;
%o A319707 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A319707 A319707aux(n) = if(isprime(n),(n%6),-n);
%o A319707 v319707 = rgs_transform(vector(up_to,n,A319707aux(n)));
%o A319707 A319707(n) = v319707[n];
%Y A319707 Cf. A319716, A319717.
%Y A319707 Cf. A007528 (positions of 5's), A002476 (positions of 7's).
%Y A319707 Cf. also A319704.
%Y A319707 Differs from A319716 for the first time at n=121.
%K A319707 nonn
%O A319707 1,2
%A A319707 _Antti Karttunen_, Oct 04 2018