This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319729 #15 Dec 26 2020 23:53:50 %S A319729 1,1,1,1,3,1,1,9,7,1,1,25,37,5,1,1,75,207,85,21,1,1,231,1347,525,591, %T A319729 7,1,1,763,10125,21385,23551,3535,113,1,1,2619,86173,180201,1216701, %U A319729 31647,30997,9,1,1,9495,819133,12066705,77636583,66620631,11485825,286929,955,1 %N A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k. %H A319729 Andrew Howroyd, <a href="/A319729/b319729.txt">Table of n, a(n) for n = 1..300</a> %F A319729 T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - _Andrew Howroyd_, Dec 26 2020 %e A319729 Triangle begins: %e A319729 1 %e A319729 1 1 %e A319729 1 3 1 %e A319729 1 9 7 1 %e A319729 1 25 37 5 1 %e A319729 1 75 207 85 21 1 %e A319729 1 231 1347 525 591 7 1 %e A319729 1 763 10125 21385 23551 3535 113 1 %e A319729 1 2619 86173 180201 1216701 31647 30997 9 1 %t A319729 Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}] %Y A319729 Row sums are A322555. %Y A319729 Cf. A000569, A005176, A058891, A059441, A295193, A301481, A306017, A306019, A306021, A319169, A319190, A319612. %K A319729 nonn,tabl %O A319729 1,5 %A A319729 _Gus Wiseman_, Dec 17 2018