cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

This page as a plain text file.
%I A319729 #15 Dec 26 2020 23:53:50
%S A319729 1,1,1,1,3,1,1,9,7,1,1,25,37,5,1,1,75,207,85,21,1,1,231,1347,525,591,
%T A319729 7,1,1,763,10125,21385,23551,3535,113,1,1,2619,86173,180201,1216701,
%U A319729 31647,30997,9,1,1,9495,819133,12066705,77636583,66620631,11485825,286929,955,1
%N A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.
%H A319729 Andrew Howroyd, <a href="/A319729/b319729.txt">Table of n, a(n) for n = 1..300</a>
%F A319729 T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - _Andrew Howroyd_, Dec 26 2020
%e A319729 Triangle begins:
%e A319729   1
%e A319729   1       1
%e A319729   1       3       1
%e A319729   1       9       7       1
%e A319729   1      25      37       5       1
%e A319729   1      75     207      85      21       1
%e A319729   1     231    1347     525     591       7       1
%e A319729   1     763   10125   21385   23551    3535     113       1
%e A319729   1    2619   86173  180201 1216701   31647   30997       9       1
%t A319729 Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]
%Y A319729 Row sums are A322555.
%Y A319729 Cf. A000569, A005176, A058891, A059441, A295193, A301481, A306017, A306019, A306021, A319169, A319190, A319612.
%K A319729 nonn,tabl
%O A319729 1,5
%A A319729 _Gus Wiseman_, Dec 17 2018