This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319743 #48 May 04 2021 09:01:57 %S A319743 1,2,11,74,602,5452,53559,558602,6106034,69298580,811086718, %T A319743 9740402476,119550632788,1495039156600,19002275811887,244983878813514, %U A319743 3198363309664658,42225545561470084,563083734161627910,7576864105285884420,102790882283750139060,1404908982711268821720 %N A319743 Row sums of A174158. %H A319743 G. C. Greubel, <a href="/A319743/b319743.txt">Table of n, a(n) for n = 1..830</a> %H A319743 Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, <a href="https://arxiv.org/abs/2105.00971">Enumeration of parallelogram polycubes</a>, arXiv:2105.00971 [cs.DM], 2021. %F A319743 a(n) = Sum_{m=1..n} (binomial(n - 1, m - 1)*binomial(n, m - 1)/m)^2. %F A319743 a(n) = Sum_{m=1..n} A000290(A007318(n - 1, m - 1)*A007318(n, m - 1)/m). %F A319743 a(n) = 4F3([1 - n, 1 - n, - n, - n], [1, 2, 2], 1), where F is the generalized hypergeometric function. %F A319743 From _Vaclav Kotesovec_, Dec 24 2018: (Start) %F A319743 Recurrence: n*(n+1)^3*(5*n^2 - 10*n + 4)*a(n) = 2*n*(2*n - 1)*(15*n^4 - 30*n^3 + 7*n^2 + 8*n - 8)*a(n-1) + 4*(n-2)^2*(4*n - 5)*(4*n - 3)*(5*n^2 - 1)*a(n-2). %F A319743 a(n) ~ 2^(4*n + 1/2) / (Pi^(3/2) * n^(7/2)). %F A319743 (End) %p A319743 a := n -> add(binomial(n-1, m-1)^2*binomial(n, m-1)^2/m^2, m = 1 .. n): seq(a(n), n = 1 .. 20) %t A319743 Table[HypergeometricPFQ[{1-n,1-n,-n,-n},{1,2,2},1],{n,1,20}] %o A319743 (GAP) List([1..20], n->Sum([1..n], m->(Binomial(n-1, m-1)*Binomial(n, m-1)/m)^2)); %o A319743 (PARI) a(n) = sum(m=1, n, (binomial(n-1, m-1)*binomial(n, m-1)/m)^2); %o A319743 (Sage) [hypergeometric([-n, -n, -n+1, -n+1], [1, 2, 2], 1).simplify_hypergeometric() for n in (1..25)] # _G. C. Greubel_, Feb 15 2021 %o A319743 (Magma) [(&+[(Binomial(n-1,j-1)*Binomial(n,j-1)/j)^2 : j in [1..n]]): n in [1..25]]; // _G. C. Greubel_, Feb 15 2021 %Y A319743 Cf. A000290, A007318, A174158, A174696. %K A319743 nonn %O A319743 1,2 %A A319743 _Stefano Spezia_, Dec 23 2018