This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319749 #26 Apr 11 2022 14:54:19 %S A319749 3,11,119,14159,200477279,40191139395243839, %T A319749 1615327685887921300502934267457919, %U A319749 2609283532796026943395592527806764363779539144932833602430435810559 %N A319749 a(n) is the numerator of the Heron sequence with h(0)=3. %C A319749 The denominator of the Heron sequence is in A319750. %C A319749 The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13). %C A319749 n even: a(n)=A041018((5*2^n-5)/3). %C A319749 n odd: a(n)=A041018((5*2^n-1)/3). %C A319749 More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1. %C A319749 sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2. %C A319749 hn(n)^2-c(n)*hd(n)^2=4 for n>1. %C A319749 From _Peter Bala_, Mar 29 2022: (Start) %C A319749 Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End) %H A319749 P. Liardet and P. Stambul, <a href="http://www.numdam.org/item?id=JTNB_2000__12_1_37_0">Séries d'Engel et fractions continuées</a>, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68. %H A319749 Wikipedia, <a href="http://en.wikipedia.org/wiki/Engel_expansion">Engel Expansion</a> %H A319749 Wikipedia, <a href="https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method">Methods of computing square roots</a> %H A319749 <a href="/index/Aa#AHSL">Index entries for sequences of form a(n+1)=a(n)^2 + ...</a> %F A319749 h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1. %F A319749 hn(n+1) = (hn(n)^2+13*hd(n)^2)/2. %F A319749 hd(n+1) = hn(n)*hd(n). %F A319749 A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2). %F A319749 A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2). %F A319749 From _Peter Bala_, Mar 16 2022: (Start) %F A319749 a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. %F A319749 a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2. %F A319749 a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1. %F A319749 a(n+1) = a(n)^2 - 2 for n >= 1. %F A319749 a(n) = A057076(2^(n-1)) for n >= 1. %F A319749 Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.) %F A319749 sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)). %F A319749 sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End) %e A319749 A078370(2)=29. %e A319749 hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727; %e A319749 hn(3)=A041046(13)=528527. %p A319749 hn[0]:=3: hd[0]:=1: %p A319749 for n from 1 to 6 do %p A319749 hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2: %p A319749 hd[n]:=hn[n-1]*hd[n-1]: %p A319749 printf("%5d%40d%40d\n", n, hn[n], hd[n]): %p A319749 end do: %p A319749 #alternative program %p A319749 a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if: %p A319749 seq(a(n), n = 0..7); # _Peter Bala_, Mar 16 2022 %o A319749 (Python) %o A319749 def aupton(nn): %o A319749 hn, hd, alst = 3, 1, [3] %o A319749 for n in range(nn): %o A319749 hn, hd = (hn**2 + 13*hd**2)//2, hn*hd %o A319749 alst.append(hn) %o A319749 return alst %o A319749 print(aupton(7)) # _Michael S. Branicky_, Mar 16 2022 %Y A319749 2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18). %Y A319749 Cf. A041018, A041019, A057076, A078370, A081459, A010122, A319750, A041046. %K A319749 nonn,frac,easy %O A319749 0,1 %A A319749 _Paul Weisenhorn_, Sep 27 2018 %E A319749 a(6) and a(7) added by _Peter Bala_, Mar 16 2022