cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319752 Number of non-isomorphic intersecting multiset partitions of weight n.

This page as a plain text file.
%I A319752 #5 Sep 28 2018 15:21:34
%S A319752 1,1,3,6,16,35,94,222,584,1488,3977
%N A319752 Number of non-isomorphic intersecting multiset partitions of weight n.
%C A319752 A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%e A319752 Non-isomorphic representatives of the a(4) = 16 multiset partitions:
%e A319752   {{1,1,1,1}}
%e A319752   {{1,1,2,2}}
%e A319752   {{1,2,2,2}}
%e A319752   {{1,2,3,3}}
%e A319752   {{1,2,3,4}}
%e A319752   {{1},{1,1,1}}
%e A319752   {{1},{1,2,2}}
%e A319752   {{2},{1,2,2}}
%e A319752   {{3},{1,2,3}}
%e A319752   {{1,1},{1,1}}
%e A319752   {{1,2},{1,2}}
%e A319752   {{1,2},{2,2}}
%e A319752   {{1,3},{2,3}}
%e A319752   {{1},{1},{1,1}}
%e A319752   {{2},{2},{1,2}}
%e A319752   {{1},{1},{1},{1}}
%Y A319752 Cf. A007716, A049311, A283877, A305854, A306006, A316980, A319616.
%Y A319752 Cf. A319755, A319759, A319760, A319765, A319779, A319787, A319789.
%K A319752 nonn,more
%O A319752 0,3
%A A319752 _Gus Wiseman_, Sep 27 2018