This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319755 #5 Sep 28 2018 15:21:49 %S A319755 1,1,2,3,6,9,19,30,60,107,212 %N A319755 Number of non-isomorphic intersecting set multipartitions (multisets of sets) of weight n. %C A319755 A set multipartition is intersecting if no two parts are disjoint. The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A319755 Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 set multipartitions: %e A319755 1: {{1}} %e A319755 2: {{1,2}} %e A319755 {{1},{1}} %e A319755 3: {{1,2,3}} %e A319755 {{2},{1,2}} %e A319755 {{1},{1},{1}} %e A319755 4: {{1,2,3,4}} %e A319755 {{3},{1,2,3}} %e A319755 {{1,2},{1,2}} %e A319755 {{1,3},{2,3}} %e A319755 {{2},{2},{1,2}} %e A319755 {{1},{1},{1},{1}} %e A319755 5: {{1,2,3,4,5}} %e A319755 {{4},{1,2,3,4}} %e A319755 {{1,4},{2,3,4}} %e A319755 {{2,3},{1,2,3}} %e A319755 {{2},{1,2},{1,2}} %e A319755 {{3},{3},{1,2,3}} %e A319755 {{3},{1,3},{2,3}} %e A319755 {{2},{2},{2},{1,2}} %e A319755 {{1},{1},{1},{1},{1}} %Y A319755 Cf. A007716, A049311, A283877, A305854, A306006, A316980, A319616. %Y A319755 Cf. A319748, A319752, A319759, A319760, A319765, A319779, A319787, A319789. %K A319755 nonn,more %O A319755 0,3 %A A319755 _Gus Wiseman_, Sep 27 2018