cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319766 Number of non-isomorphic strict intersecting multiset partitions (sets of multisets) of weight n whose dual is also a strict intersecting multiset partition.

Original entry on oeis.org

1, 1, 1, 4, 6, 14, 31, 64, 145, 324, 753
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,2,2,2}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{1,2},{2,2}}
5: {{1,1,1,1,1}}
   {{1,1,2,2,2}}
   {{1,2,2,2,2}}
   {{1},{1,1,1,1}}
   {{1},{1,2,2,2}}
   {{2},{1,1,2,2}}
   {{2},{1,2,2,2}}
   {{2},{1,2,3,3}}
   {{1,1},{1,1,1}}
   {{1,1},{1,2,2}}
   {{1,2},{1,2,2}}
   {{1,2},{2,2,2}}
   {{2,2},{1,2,2}}
   {{2},{1,2},{2,2}}
		

Crossrefs