cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319776 Number of partitions of 2n in which any two distinct parts differ by at least n.

This page as a plain text file.
%I A319776 #12 Jan 30 2022 02:34:34
%S A319776 1,2,4,6,8,9,14,13,17,20,23,22,31,28,33,38,40,39,49,45,54,57,58,57,70,
%T A319776 68,71,76,81,78,93,86,94,98,99,104,116,109,114,119,128,123,138,131,
%U A319776 140,149,146,145,162,158,166,168,173,170,185,184,193,194,195,194
%N A319776 Number of partitions of 2n in which any two distinct parts differ by at least n.
%H A319776 Vaclav Kotesovec, <a href="/A319776/b319776.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..2000 from Alois P. Heinz)
%F A319776 a(n) = A218698(2n,n).
%p A319776 g:= proc(n,i) option remember;
%p A319776       add(`if`(irem(n, j)=0, 1, 0), j=1..i)
%p A319776     end:
%p A319776 a:= proc(n) option remember; numtheory[tau](2*n)+
%p A319776       add(g(2*n-j, min(2*n-j, j-n)), j=n+1..2*n-1)
%p A319776     end: a(0):=1:
%p A319776 seq(a(n), n=0..100);
%t A319776 g[n_, i_] := g[n, i] = Sum[If[Mod[n, j] == 0, 1, 0], {j, 1, i}];
%t A319776 a[n_] := a[n] = DivisorSigma[0, 2n] + Sum[g[2n - j, Min[2n - j, j - n]], {j, n + 1, 2n - 1}]; a[0] = 1;
%t A319776 a /@ Range[0, 100] (* _Jean-François Alcover_, Dec 12 2020, after _Alois P. Heinz_ *)
%Y A319776 Cf. A218698.
%K A319776 nonn
%O A319776 0,2
%A A319776 _Alois P. Heinz_, Sep 27 2018