This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319777 #27 Jan 26 2019 11:21:19 %S A319777 1,15,100,436,1459,4069,9929,21871,44426,84494,152171,261749,432906, %T A319777 692102,1074198,1624314,2399943,3473337,4934182,6892578,9482341, %U A319777 12864643,17232007,22812673,29875352,38734384,49755317,63360923,80037668,100342652,124911036 %N A319777 a(n) is the number of equivalence classes of triples of sets each with n or fewer elements where two triples are equivalent if the number of elements in all intersections is the same. %C A319777 A019298(n) is the analogous sequence if the three sets must each have exactly n elements. %H A319777 Muniru A Asiru, <a href="/A319777/b319777.txt">Table of n, a(n) for n = 0..5000</a> %H A319777 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (7,-20,28,-14,-14,28,-20,7,-1). %F A319777 a(n) = Sum_{k=0..n} A244865(k). [corrected by _Michel Marcus_, Dec 27 2018] %F A319777 From _Colin Barker_, Dec 27 2018: (Start) %F A319777 G.f.: (1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)). %F A319777 a(n) = 7*a(n-1) - 20*a(n-2) + 28*a(n-3) - 14*a(n-4) - 14*a(n-5) + 28*a(n-6) - 20*a(n-7) + 7*a(n-8) - a(n-9) for n>8. %F A319777 (End) %e A319777 The triple (A, B, C) = ({1, 2}, {1, 2, 3}, {1, 4}) is equivalent to the triple (A', B', C') = ({1, 8}, {1, 4, 8}, {5, 8}) because all intersections of the sets in a triple are equal: %e A319777 |A| = |{1, 2}| = 2 = |{1, 8}| = |A'| %e A319777 |B| = |{1, 2, 3}| = 3 = |{1, 4, 8}| = |B'| %e A319777 |C| = |{1, 4}| = 2 = |{5, 8}| = |C'| %e A319777 |A & B| = |{1, 2}| = 2 = |{1, 8}| = |A' & B'| %e A319777 |A & C| = |{1}| = 1 = |{8}| = |A' & C'| %e A319777 |B & C| = |{1}| = 1 = |{8}| = |B' & C'| %e A319777 |A & B & C| = |{1}| = 1 = |{8}| = |A' & B' & C'| %p A319777 a:=n->add((15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920,k=0..n): seq(a(n),n=0..30); # _Muniru A Asiru_, Sep 28 2018 %o A319777 (GAP) List([0..30],n->Sum([0..n],k->(15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920)); # _Muniru A Asiru_, Sep 28 2018 %o A319777 (PARI) a(n) = sum(k=0, n, (15*(127+(-1)^k) + 6432*k + 8936*k^2 + 6480*k^3 + 2570*k^4 + 528*k^5 + 44*k^6) / 1920); \\ _Michel Marcus_, Dec 27 2018 %o A319777 (PARI) Vec((1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ _Colin Barker_, Dec 28 2018 %Y A319777 Cf. A019298, A244865. %Y A319777 Cf. A000330(n-1) is analogous, but with pairs instead of triples. %K A319777 nonn %O A319777 0,2 %A A319777 _Peter Kagey_, Sep 26 2018