cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319777 a(n) is the number of equivalence classes of triples of sets each with n or fewer elements where two triples are equivalent if the number of elements in all intersections is the same.

This page as a plain text file.
%I A319777 #27 Jan 26 2019 11:21:19
%S A319777 1,15,100,436,1459,4069,9929,21871,44426,84494,152171,261749,432906,
%T A319777 692102,1074198,1624314,2399943,3473337,4934182,6892578,9482341,
%U A319777 12864643,17232007,22812673,29875352,38734384,49755317,63360923,80037668,100342652,124911036
%N A319777 a(n) is the number of equivalence classes of triples of sets each with n or fewer elements where two triples are equivalent if the number of elements in all intersections is the same.
%C A319777 A019298(n) is the analogous sequence if the three sets must each have exactly n elements.
%H A319777 Muniru A Asiru, <a href="/A319777/b319777.txt">Table of n, a(n) for n = 0..5000</a>
%H A319777 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (7,-20,28,-14,-14,28,-20,7,-1).
%F A319777 a(n) = Sum_{k=0..n} A244865(k). [corrected by _Michel Marcus_, Dec 27 2018]
%F A319777 From _Colin Barker_, Dec 27 2018: (Start)
%F A319777 G.f.: (1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)).
%F A319777 a(n) = 7*a(n-1) - 20*a(n-2) + 28*a(n-3) - 14*a(n-4) - 14*a(n-5) + 28*a(n-6) - 20*a(n-7) + 7*a(n-8) - a(n-9) for n>8.
%F A319777 (End)
%e A319777 The triple (A, B, C) = ({1, 2}, {1, 2, 3}, {1, 4}) is equivalent to the triple (A', B', C') = ({1, 8}, {1, 4, 8}, {5, 8}) because all intersections of the sets in a triple are equal:
%e A319777 |A|         = |{1, 2}|    = 2 = |{1, 8}|    = |A'|
%e A319777 |B|         = |{1, 2, 3}| = 3 = |{1, 4, 8}| = |B'|
%e A319777 |C|         = |{1, 4}|    = 2 = |{5, 8}|    = |C'|
%e A319777 |A & B|     = |{1, 2}|    = 2 = |{1, 8}|    = |A' & B'|
%e A319777 |A & C|     = |{1}|       = 1 = |{8}|       = |A' & C'|
%e A319777 |B & C|     = |{1}|       = 1 = |{8}|       = |B' & C'|
%e A319777 |A & B & C| = |{1}|       = 1 = |{8}|       = |A' & B' & C'|
%p A319777 a:=n->add((15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920,k=0..n): seq(a(n),n=0..30); # _Muniru A Asiru_, Sep 28 2018
%o A319777 (GAP)  List([0..30],n->Sum([0..n],k->(15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920)); # _Muniru A Asiru_, Sep 28 2018
%o A319777 (PARI) a(n) = sum(k=0, n, (15*(127+(-1)^k) + 6432*k + 8936*k^2 + 6480*k^3 + 2570*k^4 + 528*k^5 + 44*k^6) / 1920); \\ _Michel Marcus_, Dec 27 2018
%o A319777 (PARI) Vec((1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ _Colin Barker_, Dec 28 2018
%Y A319777 Cf. A019298, A244865.
%Y A319777 Cf. A000330(n-1) is analogous, but with pairs instead of triples.
%K A319777 nonn
%O A319777 0,2
%A A319777 _Peter Kagey_, Sep 26 2018